Synopsis: Atoms for Magnetism

A magnetometer based on laser measurements of atomic energy levels can detect a magnetic field one hundred billion times smaller than the Earth’s.
Synopsis figure
Courtesy J. Shi/Princeton University

Sensitive magnetic detectors are essential for applications ranging from land mine clearance to imaging the magnetic activity of our brains, as well as for fundamental investigations of the symmetry of nature’s laws. Superconductor-based magnetometers have been the primary devices for ultrasensitive detection for a number of years. But atomic magnetometers—based on gases of atoms like rubidium—have recently started to offer comparable or better sensitivity, with the advantage of not requiring bulky and expensive cryogenic cooling. Yet the most sensitive schemes could only work in a highly shielded environment, screened from the Earth’s own magnetic field. Now, writing in Physical Review Letters, Dong Sheng at Princeton University, New Jersey, and co-workers report an atomic magnetometer that can detect fields one hundred billion times smaller than the Earth’s while operating in a finite field.

Atomic magnetometers detect how internal atomic levels are split into different spin states through the Zeeman effect induced by the external magnetic field. Typically, a pump laser is used to “polarize” the atoms by populating specific spin states, and a probe laser reads out the spin precession, yielding a signal that is proportional to the magnetic field. Sheng et al. have introduced two key improvements. First, they used a multipass cell in which the probe laser beam passes many times through the rubidium vapor, enhancing the measured signal. Second, they used a fast time-resolved setup, allowing the measurement to take place within 1 millisecond of laser pumping, before mechanisms that cause spin relaxation—the ultimate limit to noise in these systems—kick in. The demonstrated sensitivity, on par with the best available sensors, can be achieved without the need to operate under a close-to-zero magnetic field. – Matteo Rini


More Announcements »

Subject Areas

Atomic and Molecular PhysicsMagnetism

Previous Synopsis

Quantum Physics

Quantum-ness Put on the Scale

Read More »

Next Synopsis

Related Articles

Viewpoint: Cool Physics with Warm Ions
Atomic and Molecular Physics

Viewpoint: Cool Physics with Warm Ions

Ultrafast laser pulses can be used to control and characterize the quantum motion of a single trapped ion over 5 orders of magnitude in temperature. Read More »

Synopsis: Measuring Spin One Atom at a Time

Synopsis: Measuring Spin One Atom at a Time

Electron microscopy experiments have measured the spin state of individual metal atoms on a graphene layer, characterizing their potential for information storage applications.   Read More »

Synopsis: The Quantum Hall Effect Leaves Flatland
Atomic and Molecular Physics

Synopsis: The Quantum Hall Effect Leaves Flatland

Cold atoms in an optical lattice with a synthetic extra dimension could be used to see the 4D version of the quantum Hall effect.   Read More »

More Articles