Synopsis: Circuit Ready

Plasmonic circuits are made more compact by using a carbon nanotube as an integrated light source.
Synopsis figure
Courtesy P. Rai et al.

Shine light of just the right frequency on a metal film and it’s possible to generate electromagnetic waves that travel along its surface. These waves, called surface plasmon polaritons (SPPs), are more localized and have a shorter wavelength than the light that excited them. Such attributes could be used to make ultracompact plasmonic circuits, in which the waves shuttle information around an optical chip much smaller than those in use today. Now, in Physical Review Letters, Padmnabh Rai, of the French National Center for Scientific Research (CNRS) in Dijon, and colleagues report the first example of a plasmonic circuit that packs two essential pieces, the light source and a waveguide for the plasmons, into a single device.

Typically, a laser and some optical elements are needed to couple light into a metal to create SPPs. In their devices, Rai et al. replaced these bulky components with a carbon nanotube field-effect transistor (a device widely used in nanoelectronic circuits in which a voltage “gate” controls the nanotube’s resistance) and electrically connected it to a metal strip (the waveguide) in a T-shaped configuration. The authors then ramped up a voltage across the nanotube until it emitted a narrow band of light—a process called electroluminescence. At the same time, a camera showed that light was also being emitted from the edges of the metal strip, evidence that the nanotube had excited SPPs. One interesting finding was that SPP intensity increased in devices where the carbon nanotube was more aligned with the length of the strip, suggesting that future designs could be optimized to produce plasmons more efficiently. – Jessica Thomas


More Announcements »

Subject Areas


Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Measuring Spin One Atom at a Time

Synopsis: Measuring Spin One Atom at a Time

Electron microscopy experiments have measured the spin state of individual metal atoms on a graphene layer, characterizing their potential for information storage applications.   Read More »

Viewpoint: Sharing Quantum States
Condensed Matter Physics

Viewpoint: Sharing Quantum States

A quantum dot can form a mesoscopic quantum state together with the electrons of a cavity in which the dot is embedded. Read More »

Focus: Shaking Cleans Nanoscale Surface

Focus: Shaking Cleans Nanoscale Surface

An oscillatory motion dramatically reduces the number of contaminant molecules at the interface between two surfaces. Read More »

More Articles