Synopsis: Building a Better Quantum State

A new algorithm can determine the precision with which a quantum state can be reconstructed via quantum tomography.
Synopsis figure
T. Sugiyama et al., Phys. Rev. Lett. (2013)

All quantum technologies, from cryptography to computing, rely on the precise preparation and characterization of quantum states, i.e., the wave functions of a particle or an ensemble of particles. But wave functions cannot be directly visualized to verify that such states have been correctly prepared. A technique known as quantum tomography offers a possible solution: much like classical tomography, which records 3D images by putting together 2D projections, quantum tomography characterizes the complete quantum state through a series of projective measurements, for instance, the different polarization states of a photon. But so far researchers have not been able to develop a rigorous method for determining how close a tomographic reconstruction is to the real quantum state.

In a paper in Physical Review Letters, Takanori Sugiyama and colleagues at the University of Tokyo, Japan, now report they have derived new quantitative formulas for calculating the precision of quantum tomography. After a set of states has been prepared and characterized by a series of measurements, the algorithm can determine how close such states are to desired target states. Their protocol has important advantages over competing approaches: first, given a sufficient number of measurements, it can guarantee that the state estimated by quantum tomography is arbitrarily close to the true state. Second, the formulas depend only on parameters that can be extracted from the measurements and not on a priori assumptions on the true prepared state. The method can be applied to a broad class of experiments and adapted to the most commonly used ways of measuring the “quantum distance” between states. – Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum Physics

Previous Synopsis

Biological Physics

Pushy Cells

Read More »

Next Synopsis

Quantum Physics

Rescuing Heisenberg

Read More »

Related Articles

Viewpoint: How to Create a Time Crystal
Atomic and Molecular Physics

Viewpoint: How to Create a Time Crystal

A detailed theoretical recipe for making time crystals has been unveiled and swiftly implemented by two groups using vastly different experimental systems. Read More »

Synopsis: Chaos from a Chilled Cloud of Atoms
Nonlinear Dynamics

Synopsis: Chaos from a Chilled Cloud of Atoms

A map of chaos emerging in a Bose-Einstein condensate provides a rare glimpse of the behavior in a system of many quantum particles.   Read More »

Viewpoint: A More Efficient Way to Describe Interacting Quantum Particles in 1D
Atomic and Molecular Physics

Viewpoint: A More Efficient Way to Describe Interacting Quantum Particles in 1D

A new method for calculating the time-evolving behavior of interacting quantum particles in one dimension can be used to model experiments that were previously beyond description. Read More »

More Articles