Synopsis: Molecular Rotations Now Seen on Surfaces

Scanning tunneling microscopy peels back the curtain on the rotational energy levels of adsorbed molecules.

Studying one or a few layers of atoms or molecules on a substrate is a difficult business: signals are weak and there is always the possibility that the particles could blow away. Surface scientists have successfully overcome these challenges to measure energy levels of vibrational modes of individual molecules on surfaces, but rotational states have remained out of reach. Fabian Natterer and colleagues from Ecole Polytechnique Federale de Lausanne (EPFL) now report their success observing them in Physical Review Letters. Using scanning tunneling microscopy (STM), they have detected differences in rotational states of different isotopic forms of molecular hydrogen. And because they can identify the nuclear spin state of a molecule, the method greatly expands the capability of atomic scale surface analysis.

The EPFL team studied monolayers of molecular hydrogen (H2) and its isotopic forms HD and D2 on a nickel substrate insulated by a coating of boron nitride or graphene. When they scanned the surface with a STM tip they observed sharp changes in conductance that corresponded to rotational energy levels in the molecule. In addition, the researchers could identify nuclear spin isomers: the so-called ortho (spins antiparallel) and para (spins parallel) forms of molecule hydrogen, which have different energy levels.

The authors expect their STM rotational spectroscopic method to be useful in studying other diatomic molecules such as nitrogen and oxygen, and perhaps polyatomic species such as methane and ammonia. By complementing the powerful techniques of inelastic electron tunneling spectroscopy, the STM approach offers a broad toolkit for the study of chemical, electronic, magnetic, mechanic, and nuclear aspects of surfaces and adsorbates. This latest addition could potentially advance the field by investigating nuclear processes with unprecedented spatial resolution. – David Voss


Announcements

More Announcements »

Subject Areas

NanophysicsPhysical Chemistry

Previous Synopsis

Particles and Fields

Dirac Oscillator with Microwaves

Read More »

Next Synopsis

Optics

A Tripod of Light

Read More »

Related Articles

Focus: Atom-Scale Ohmmeter
Nanophysics

Focus: Atom-Scale Ohmmeter

A highly stable scanning tunneling microscope measures the electrical properties of a metal on a scale smaller than individual atoms. Read More »

Viewpoint: An Inside View of Magnetic Skyrmions
Magnetism

Viewpoint: An Inside View of Magnetic Skyrmions

Atomic-scale imaging reveals the shape and size of a technologically interesting magnetic quasiparticle. Read More »

Focus: Voltage Fluctuations Converted to Electricity
Mesoscopics

Focus: Voltage Fluctuations Converted to Electricity

In a step toward the conversion of excess heat into electric current, researchers demonstrate a device that generates current in response to voltage fluctuations that mimic heat. Read More »

More Articles