Synopsis: Competing for Advantage in a Phonon Laser

Mode competition—a well-known phenomenon in photon lasers—has now been studied and controlled in phonon lasers.
Synopsis figure
Utku Kemiktarak/NIST

Within the past decade, researchers have started to make phonon lasers, also called “sasers” (sound amplification by stimulated emission of acoustic radiation) in analogy with lasers that emit photons. In conventional lasers, mode competition is important: while the laser cavity can, in principle, sustain different oscillation modes, one mode can steal gain from the others and become dominant. Controlling this competition is useful in obtaining single-mode emission with precisely defined frequency and spatial characteristics. As reported in Physical Review Letters, researchers in the group of John Lawall, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, have studied and controlled mode competition in a saser.

The NIST team built a phonon laser consisting of a resonant optical cavity in which one of the mirrors is a reflective membrane that can support the oscillation of a large set of mechanical modes. A laser pumps the cavity and the circulating light is coupled to the membrane’s mechanical degrees of freedom by radiation pressure. This, in turn, provides the phonon gain that leads to “sasing.” A probe laser monitors the displacement of the membrane, indicating which modes are oscillating.

Just as in a photon laser, the saser exhibits mode competition. All of the modes initially experience gain, and those for which the gain exceeds the losses start to oscillate. At low pump power, there is only one such mode, but at higher pump power, multiple modes start to oscillate and compete for the available optically furnished gain. Eventually, one mode emerges victorious, suppressing oscillation in the other modes. The pump power provides a mode-selection knob; by controlling the relative gains of the various modes, different modes can be selected to prevail, and the sasing frequency can be determined in advance. The ability to select individual modes may move these devices closer to applications. – David Voss


Announcements

More Announcements »

Subject Areas

OpticsAcoustics

Previous Synopsis

Atomic and Molecular Physics

Bose-Einstein Condensates for Gamma-Ray Lasers

Read More »

Next Synopsis

Related Articles

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence
Atomic and Molecular Physics

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence

By bathing a superconducting qubit in squeezed light, researchers have been able to confirm a decades-old prediction for the resulting phase-dependent spectrum of resonance fluorescence. Read More »

Synopsis: Polarons Drive a Magneto-Optical Effect
Magnetism

Synopsis: Polarons Drive a Magneto-Optical Effect

A surprisingly large magneto-optical response occurs when mobile electrons in a cooled material become trapped by their interaction with the surrounding lattice. Read More »

Synopsis: A Single-Photon Cheshire Cat
Quantum Physics

Synopsis: A Single-Photon Cheshire Cat

Researchers detected the polarization of a photon separate from the photon itself, just as the grin of Lewis Carroll’s Cheshire cat can appear apart from the cat’s body. Read More »

More Articles