Synopsis

Turbulent Times

Physics 7, s89
By tracking the movement of tracer particles in a turbulent flow, researchers can connect the irreversibility of turbulence with microscopic fluid properties.

One hallmark of fluid turbulence is the cascade of energy from large-scale fluid motions to smaller flow structures: Stirring a cup of coffee ends up causing a multitude of tiny eddies going in every direction. And this cascade goes one way: Tiny eddies do not add up to spin the coffee in a large coherent motion; instead, they are dissipated by viscosity. Researchers have developed various statistical models in which time asymmetry is predicted to be related to an asymmetry in the microscopic motion of particles: The expression for the distance between two particles involves an odd order term in time ( t3), which breaks symmetry. But no direct experimental probes could back up this conclusion.

Now, in a paper in Physical Review Letters, a group in the laboratory of Eberhard Bodenschatz at the Max Planck Institute for Dynamics and Self-Organization, Germany, report a controlled laboratory study of particle movements in a turbulent flow. The researchers use a water tank with rotating blades at the top and bottom that create a turbulent fluid section, and they track the motion of suspended polystyrene microspheres with high-speed cameras.

The setup allowed the researchers to track the separation of pairs of particles as a function of time. For short times, the results confirm that the time asymmetry in pair separation depends on a t3 term: two particles separate more slowly in the forward than in the backward direction, a clear manifestation of the breaking of time symmetry. But the authors see a stronger, linear dependence of time asymmetry when they look at how groups of four particles deform in the flow. This allows them to connect the irreversibility to a fundamental property—the rate of strain of the fluid—and suggests that multiparticle tracking might be a powerful way to study turbulence. – David Voss


Subject Areas

Fluid Dynamics

Related Articles

Link Verified between Turbulence and Entropy
Statistical Physics

Link Verified between Turbulence and Entropy

The verification of a 63-year-old hypothesis indicates that nonequilibrium statistical mechanics could act as a theoretical framework for describing turbulence. Read More »

Ocean Measurements Detect Conditions for Giant Waves
Fluid Dynamics

Ocean Measurements Detect Conditions for Giant Waves

Observations of the Southern Ocean show that wind can produce the surface states needed to generate rare “rogue” waves. Read More »

A Supernova Remnant Shaped by Vortices
Fluid Dynamics

A Supernova Remnant Shaped by Vortices

The clumpy structure of a ring of gas ejected by the progenitor star of the supernova 1987A could have formed when vortices in the gas interacted. Read More »

More Articles