Synopsis

Zeeman Effect Induced by Light Waves

Physics 7, s98
The magnetic field of intense visible light should have a major effect on the spectra of plasmas made from a wide range of elements.
E. Stambulchik and Y. Maron, Phys. Rev. Lett. (2014)

The magnetic field of a light wave has a much weaker effect on matter than its electric field, so theorists rarely worry about magnetic effects of light on atoms. But a team writing in Physical Review Letters predicts that hitting a wide range of single-electron ions with high-intensity laser pulses should reveal magnetic effects in the spectra. The result, which could have been calculated decades ago, could lead to a new, more direct technique to measure the intensity of powerful research lasers.

Ordinarily, the Zeeman effect—the splitting of atomic energy levels in a magnetic field—is assumed to be unobservable as an effect of electromagnetic waves, but Evgeny Stambulchik and Yitzhak Maron of the Weizmann Institute in Israel now suggest otherwise. They performed a detailed analysis of a light wave interacting with an atom containing a single electron making transitions from an excited state to the ground state, using both analytical techniques and simulations. They found that in a hot krypton plasma, for example, there is a dramatic magnetic effect on the spectrum, especially with a light source with intensity of more than 1020 watts per square centimeter.

Such intensities are available at a growing number of facilities worldwide, and Stambulchik and Maron say that the long-ignored effect could in principle be used to spectroscopically measure the intensity of such lasers without disrupting ongoing experiments. (Currently these facilities must reconfigure for such tests and can’t do them at full power.) The authors also foresee implications for the interpretation of spectra emitted from laser-plasma interactions. – David Ehrenstein


Subject Areas

Atomic and Molecular Physics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

Precise Measurement of Hydrogen’s Energy Levels
Atomic and Molecular Physics

Precise Measurement of Hydrogen’s Energy Levels

Researchers have measured the transition energy of several highly excited states, which could help resolve a discrepancy about the size of the proton. Read More »

More Articles