Synopsis

Seeing the Glass of Milk as All Empty

Physics 7, s122
A normally opaque medium can become fully transparent to properly tailored acoustic waves.
B. Gérardin et al., Phys. Rev. Lett. (2014)

A glass of milk is opaque because light scatters off of randomly placed molecules. But disordered materials like milk or clouds could appear transparent to certain combinations of waves that constructively interfere with each other. Previous experiments have realized enhanced transmission, but now, for the first time, researchers have observed 100% transmission (as well as 100% reflection) of acoustic waves traveling through a two-dimensional disordered medium.

A disordered material presents incoming waves with a random field of scatterers. A single plane wave could never wind its way through this thicket, but several plane waves coming in at different directions could scatter in a constructive way. Theorists predicted 30 years ago that certain wave combinations could produce full transmission or reflection, but identifying these so-called “open” or “closed” channels is challenging because most systems have an enormous set of possible incoming waves.

To reduce the size of the problem, Alexandre Aubry and his colleagues from the Langevin Institute (ESPCI ParisTech, CNRS) in France looked at acoustic (vibrational) waves traveling on an aluminum plate with randomly drilled holes that act as scattering sites. Laser pulses generated incoming waves at 50 separate points on the plate, and the resulting vibrations were recorded at specific output points. From this data, the researchers derived an input-output transmission matrix, which allowed them to compute the combination of input waves corresponding to open (closed) channels. They subsequently prepared such waves and verified that their transmission (reflection) was roughly 100%. The results provide the first demonstration of long-standing theoretical predictions and might help design optimal schemes for controlling wave propagation in digital communication channels.

This research is published in Physical Review Letters.

–Michael Schirber


Subject Areas

OpticsMaterials Science

Related Articles

Thermal Conductivity Not Too Hot to Handle
Materials Science

Thermal Conductivity Not Too Hot to Handle

A radiometry technique directly measures thermal conductivity in molten metals and confirms the relationship with electrical resistivity. Read More »

Stiffening a Spring Made of Light
Optics

Stiffening a Spring Made of Light

Adding a nonlinear crystal to an optical spring can change the spring’s stiffness, a finding that could allow the use of such devices as gravitational-wave detectors. Read More »

Shielding Quantum Light in Space and Time
Quantum Physics

Shielding Quantum Light in Space and Time

A way to create single photons whose spatiotemporal shapes do not expand during propagation could limit information loss in future photonic quantum technologies. Read More »

More Articles