Synopsis: Black Hole Tests of Fermionic Dark Matter

Gamma-ray observations of dark matter spikes near supermassive black holes provide a test of fermionic dark matter models.
Synopsis figure
NASA/JPL-Caltech

One of the principal strategies to indirectly detect dark matter is to search for the photons produced when it annihilates. Such searches look for gamma rays or x rays in regions of the sky where dark matter is known to be abundant. Researchers at the University of Illinois at Urbana–Champaign have proposed to look inside dark matter spikes induced by the gravitational pull of supermassive black holes. Such measurements could test so called p-wave dark matter models.

Most astrophysical dark matter searches rely on the assumption that the annihilation cross section does not depend on particle velocity. However, there are models in which dark matter annihilates via p-wave interactions—that is, the pair of annihilating particles has initial angular momentum one—leading to a cross section proportional to the velocity squared. This happens, for instance, in models where fermionic dark matter annihilates to pairs of spinless bosons. Since the dark matter temperature, and hence its velocity, is believed to be low, p-wave signatures were largely inaccessible by current searches.

However, near a supermassive black hole like the Milky Way's Sagittarius A*, dark matter is expected to cluster into a density spike. Within such a spike, the density and velocities of dark matter particles could be sufficient for thermal p-wave annihilation to produce a detectable gamma-ray signal. Using two prototypical p-wave models and gamma-ray data from NASA’s Fermi Large Area Telescope, the researchers found no evidence for p-wave dark matter and constrained its annihilation cross section for the first time. Their analysis suggests that a dedicated search for sharp gamma-ray lines near Sagittarius A* can improve these constraints.

This research is published in Physical Review Letters.

–Kevin Dusling


Announcements

More Announcements »

Subject Areas

Particles and FieldsAstrophysicsGravitation

Previous Synopsis

Next Synopsis

Particles and Fields

Still Waiting For Electron Decay

Read More »

Related Articles

Synopsis: Emptiness Constrains the Universe
Astrophysics

Synopsis: Emptiness Constrains the Universe

The distribution of galaxies around regions of relatively empty space can be used to constrain cosmological parameters. Read More »

Synopsis: Pentaquark Discovery Confirmed
Particles and Fields

Synopsis: Pentaquark Discovery Confirmed

New results from the LHCb experiment confirm the 2015 discovery that quarks can combine into groups of five. Read More »

Synopsis: Searching for Majorana Neutrinos
Particles and Fields

Synopsis: Searching for Majorana Neutrinos

The KamLAND-Zen collaboration has run the most sensitive search to date for a radioactive decay that could reveal whether neutrinos are Majorana fermions. Read More »

More Articles