Synopsis: Shape Shifting Water Droplets

Sheets of liquid droplets can spontaneously and reversibly change their shape.
Synopsis figure
T. Zhang et al., Phys. Rev. Lett. (2016)

Biological self-assembly—such as the folding of polypeptide chains into proteins—is the process by which smaller components spontaneously organize into ordered structures. Taking a cue from biology, researchers have engineered materials that, through self-assembly, fold into designated geometries. Recent work, for instance, showed that sheets of aqueous droplets can assemble into a variety of three-dimensional shapes. Expanding on this result, Mark Bowick and collaborators at Syracuse University, New York, have now demonstrated theoretically that such droplet networks can be programmed to reversibly switch between different shapes. This finding is a step toward biologically inspired robots that can change their shape according to their environment.

Bowick and his colleagues modeled sheets of micrometer-sized water droplets joined by permeable single lipid bilayers to form a tissue-like structure. By varying the concentrations of solutes within the droplets, the researchers created osmotic pressure that, by swelling some of the droplets and shrinking others, can cause the sheets to fold into several possible structures. The researchers focused on a configuration investigated in previous experiments—a four-petal design that spontaneously folded to produce a hollow sphere. They then demonstrated that they could reverse the shape change by placing the hollow sphere in a liquid medium with a higher solute concentration. According to their calculations, the droplets in the sphere lost water and shrank, leading the sphere to unfold back into the flat four-petal shape.

This research is published in Physical Review Letters.

–Katherine Kornei


Announcements

More Announcements »

Subject Areas

Chemical PhysicsFluid Dynamics

Previous Synopsis

Next Synopsis

Particles and Fields

The Heavy Limit of Dark Matter

Read More »

Related Articles

Synopsis: Tiny Droplets Do the Twist
Fluid Dynamics

Synopsis: Tiny Droplets Do the Twist

Liquid-crystal droplets can act like controllable artificial swimmers, twisting in two and three dimensions. Read More »

Synopsis: Water Under Confinement
Chemical Physics

Synopsis: Water Under Confinement

Molecular dynamics simulations indicate that the dielectric constant of water may dramatically change when the liquid is confined between two surfaces. Read More »

Synopsis: Forming Granular Plugs
Fluid Dynamics

Synopsis: Forming Granular Plugs

Experiments on grain-water-air mixtures flowing through a tube find that frictional forces between the grains and the tube lead to the creation of a series of plugs. Read More »

More Articles