Synopsis

Strange Mesonic Atoms Detected

Physics 9, s98
The DIRAC collaboration at CERN reports the first statistically significant observation of an atom formed from a 𝜋 meson and a K meson.
DIRAC Collaboration, Phys. Rev. Lett. (2016)

An atom is normally a nucleus surrounded by electrons. But physicists have observed several exotic atoms comprising other particles, such as mesons (two-quark particles). Following earlier hints, a new analysis of data from the DIRAC experiment at CERN finds the first conclusive evidence of an atom made up of a 𝜋 meson (containing up and down quarks) and a K meson (containing up and strange quarks). Further study of these strange dimesons should give insight into how quarks interact at relatively low energies.

Meson-containing atoms, such as kaonic hydrogen (proton plus K) and pionium (two oppositely charged 𝜋 mesons), are bound together by electromagnetic forces. However, strong force interactions between quarks cause the atoms to decay. Precise measurements of these decay lifetimes would place important constraints on the probabilities of low-energy quark scattering, which cannot be calculated directly.

The DIRAC experiment was built to detect and characterize 𝜋K atoms (as well as 𝜋𝜋 atoms). To create these bound states, the researchers fire a high-energy proton beam into a thin metal sheet. Collisions between protons and metal nuclei occasionally produce 𝜋K atoms, and some of these atoms collide with other nuclei, causing them to dissociate into unbound 𝜋K pairs. DIRAC is designed to detect these pairs using a double-arm mass spectrometer. Previous results showed evidence of 𝜋K atoms, but the underlying statistical significance was too low to claim a detection. The DIRAC collaboration has now combined data from trials using different metal sheets and has improved estimates of the background from 𝜋K pairs unrelated to atoms. The team reports the detection of over 300 𝜋K atoms. Additional analysis is continuing to extract the lifetime of the 𝜋K decay.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

Particles and Fields

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

Evidence of a New Subatomic Particle
Particles and Fields

Evidence of a New Subatomic Particle

A signal from the decay products of a meson—a quark and an antiquark—comes from two subatomic particles and not one, as previously thought. Read More »

More Articles