Synopsis: Optical Computing Under the Lens

A theoretical analysis quantifies the technical resources required to build a quantum computer based on photons.

Photons and linear optical components, such as mirrors and beam splitters, have been touted as a practical means to make a quantum computer. But what does it really take to build, block by block, such a linear optical quantum computer? Ying Li from the University of Oxford, UK, and colleagues now describe a theoretical analysis that puts numbers on the technical resources required to build such a machine.

Their work goes beyond previous analyses because it does two things simultaneously. One, it determines the overall number of components needed to build a useful linear optical quantum computing (LOQC) machine. And two, it establishes the maximum photon-loss and error rates that each component should have to enable fault-free computation. It also provides a comparison with computing schemes that use matter such as atoms and superconducting circuits, as opposed to photons, to encode quantum information.

The authors estimate that, for a photon-loss rate per component of one in a thousand and an error rate per component of one in a hundred thousand, the total number of components required is at least 5 orders of magnitude larger than for a matter-based processor. This is because photons interact with each other much more weakly than matter particles do. LOQC schemes overcome this limitation only at the cost of massively more complex circuits. While these results may be regarded as bad news for LOQC, they could guide researchers in the search for improved protocols for LOQC. In the end, hybrid architectures that combine photons and matter may turn out to be better than pure optical approaches.

This research is published in Physical Review X.

–Ana Lopes


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationQuantum Physics

Previous Synopsis

Biological Physics

Buckling in Bacteria Tails

Read More »

Next Synopsis

Related Articles

Viewpoint: How to Create a Time Crystal
Atomic and Molecular Physics

Viewpoint: How to Create a Time Crystal

A detailed theoretical recipe for making time crystals has been unveiled and swiftly implemented by two groups using vastly different experimental systems. Read More »

Synopsis: Chaos from a Chilled Cloud of Atoms
Nonlinear Dynamics

Synopsis: Chaos from a Chilled Cloud of Atoms

A map of chaos emerging in a Bose-Einstein condensate provides a rare glimpse of the behavior in a system of many quantum particles.   Read More »

Viewpoint: A More Efficient Way to Describe Interacting Quantum Particles in 1D
Atomic and Molecular Physics

Viewpoint: A More Efficient Way to Describe Interacting Quantum Particles in 1D

A new method for calculating the time-evolving behavior of interacting quantum particles in one dimension can be used to model experiments that were previously beyond description. Read More »

More Articles