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Controlling self-organizing systems is challenging because the system responds to the controller. Here,

we develop a model that captures the essential self-organizing mechanisms of Bak-Tang-Wiesenfeld

(BTW) sandpiles on networks, a self-organized critical (SOC) system. This model enables studying a

simple control scheme that determines the frequency of cascades and that shapes systemic risk. We show

that optimal strategies exist for generic cost functions and that controlling a subcritical system may drive it

to criticality. This approach could enable controlling other self-organizing systems.
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Complex, self-organizing systems are challenging to
control because their feedback mechanisms make it diffi-
cult to predict the effects of perturbations. For example,
strategies for vaccination and quarantine must account for
the human–disease feedback, namely, that people’s behav-
ior affects the spread of epidemics and epidemics affect
people’s behavior [1]. Accounting for feedbacks is espe-
cially important for controlling systems poised near a
critical point because small changes can cause dramatic
consequences. Many engineered and natural systems—
such as forest fires [2], power grids [3], water reservoirs
[4], brains [5,6], economies [7,8], and financial markets
[9]—appear to self-organize toward critical points with
power-law-distributed event sizes, a phenomenon called
self-organized criticality (SOC). Thus, controlling these
systems can profoundly affect systemic risk (i.e., the
chance of system-wide catastrophe). For example, sup-
pressing small blackouts in power grids may increase the
risk of large ones [3]; making grids ‘‘smart’’ by adding
meters, controlling loads, and introducing differential pric-
ing [10,11] could affect reliability in diverse ways. To meet
the challenge of controlling self-organizing systems, here
we use analytical models that capture the system’s feed-
back mechanisms, i.e., models that self-organize.

Consider a complex system S that self-organizes to a

stationary state bS. To simplify and understand S, we model
S in one of two ways. An empirical model E contains para-

meters measured from the stationary state bS. By contrast, a
mechanistic model M contains only mechanistic rules

(without empirical measurements of bS). Although E pro-

vides insight into bS, E cannot predict the effects of control-

ling the system away from bS. However, ifM self-organizes

to a stationary state cM via mechanisms like those that drive

S to bS, then controlling M to change cM can efficiently

predict ways to control S to change bS, thus solving the open
problems of reducing the systemic risk of and enhancing the
function of self-organizing systems [1–6,9].

In this Letter, we contribute a successful example of
controlling an SOC system using a mechanistic model.
Here, the system is the BTW sandpile process on a net-
work, denoted by SBTW, and EBTW is a well-studied past
model [12]. Our mechanistic model MBTW is a multitype
branching process that self-organizes by fixing its free
parameters via self-consistency. UsingMBTW, we system-
atically evaluate a control scheme for SBTW, an exercise
expensive to simulate with SBTW and impossible with
EBTW. Specifically, we control how often cascades occur,
which affects how large cascades could plausibly be. The
results illuminate the tradeoffs that plague strategies to
control many natural, financial, and infrastructure systems:
frequently triggering cascades mitigates large events but
sacrifices short-term profit, while avoiding cascades
maximizes short-term profit but suffers from rare, massive
events. We expect self-organizing, multitype branching
processes like MBTW to inform controlling other self-
organizing systems, including multistate dynamics with
information bouncing back-and-forth on networks.
BTW sandpile on a network.—The presence of power

laws in the magnitudes of events occurring in many real-
world systems is often attributed to SOC [2–6,9,13,14].
Typically, two competing mechanisms dominate: large
events slowly but steadily become more probable, whereas
the probability of future large events decreases when a
large event occurs. For example, tectonic energy builds
and then releases in earthquakes [15]. As another example,
investment managers or infrastructure stakeholders bal-
ance cost and fear: they may slowly increase risk for profit,
but when catastrophe occurs they mitigate risk via self-
moderation or imposed regulations.
The BTW sandpile process [13,14] is an archetypal

example of such mechanisms. We slowly add grains of
sand (interpreted as load) to the system, which increases
the chance of large cascades, but grains dissipate (disap-
pear) during cascades. Originally introduced on the 2D
lattice [13,14], the BTW sandpile process has since been
generalized to networks in a few natural ways that differ
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only in specifics [12,15–23]. In this Letter, we consider the
following formulation [12,22,23].

The system SBTW consists of a network of N nodes that
hold grains of sand. The structure of the network is fixed,
but the amount of sand on each node changes in time. We
call a node i-sand if it holds i grains of sand. The capacity
of a node is the maximal amount of sand that it can hold. In
this Letter, we set the capacity of every node to 1 less than
its degree (number of neighbors) [12,19–23]. Hence, a
2-sand node of degree 3 is at capacity, meaning that it
holds as much sand as it can withstand. Adding a grain to
this node brings it over capacity. A node over capacity
topples, meaning that it sheds its load by sending one grain
to each of its neighbors.

The process consists of cascades (avalanches) defined as
follows. Drop a grain of sand on a node chosen uniformly at
random, called the root of the cascade. If this addition does
not bring the root over capacity, then that cascade is fin-
ished. Otherwise, the root topples by shedding one grain to
each of its neighbors. Any node that now exceeds its ca-
pacity topples in the sameway, until all nodes are under or at
capacity. Whenever a grain of sand moves from one node to
another, it dissipates (disappears) independentlywith proba-
bility �. The size of a cascade is the number of toppling
events, while the area of a cascade is the number of nodes
that topple. We begin a new cascade by dropping a grain on
a uniformly random root node. See the Supplemental
Material (SM) [24] for the algorithm used in simulations.

In the dual limit of infinite network size (N ! 1) and
then rare dissipation (� ! 0) [25], it has been shown that the

system self-organizes to a critical state bSBTW [12,19]. Both
the cascade area and the cascade size distribution then
exhibit a power law with exponent ��, where � ¼ 3=2
for random graphs with light-tailed degree distributions
(themean-field case) and � ¼ �=ð�� 1Þ for randomgraphs
with power-law degree distributions of exponent � [12].

For simplicity, this Letter considers the BTW process on
a random 3-regular graph (i.e., a random network of
degree-three nodes). We define c 0, c 1, and c 2 to be the
probabilities that a uniformly random node is 0-, 1-, or
2-sand, respectively. Similarly, for all i, j 2 f0; 1; 2g, we
define �ij to be the probability of reaching a j-sand node

by following a link from a uniformly random i-sand node.
Note that the methods used in this Letter can generalize to
networks other than 3-regular, which will be considered in
an upcoming publication.

Empirical and self-organizing models.—A simple, em-
pirical model EBTW of the BTW sandpile process on a
random 3-regular graph may be derived as follows.
Assuming N ! 1, the probability generating function
(PGF) for cascade area, GðxÞ � P1

a¼0 Pðarea ¼ aÞxa, can
be obtained by a standard single-type branching process

FðxÞ ¼ 1� ð1� �Þ�22 þ ð1� �Þ�22x½FðxÞ�2; (1a)

GðxÞ ¼ 1� c 2 þ c 2x½FðxÞ�3: (1b)

Equation (1) uses the empirical observation that in treelike
graphs only nodes initially at capacity (i.e., nodes at
capacity just before the cascade begins) can topple during
this cascade; we rigorously prove this observation using a
mechanistic perspective in the Supplemental Material [24].
The PGF FðxÞ gives the contribution to the area of a node
that sends a grain to a neighbor v that has not yet toppled:
the grain reaches v with probability 1� �, and v is at
capacity with probability �22. If both these events occur,
then v topples (factor x) and sends grains toward its three
neighbors, two of which have not yet toppled (factor
½FðxÞ�2). In GðxÞ, the root is initially at capacity with
probability c 2, in which case it topples (factor x) and
sends a grain toward its three neighbors (factor ½FðxÞ�3).
For fixed dissipation � > 0, we can measure c 2 and �22

in simulations (i.e., in bSBTW) and use EBTW [Eq. (1)] to
approximate the probability distribution of cascade area.
However, this empirical model cannot predict the parame-
ters c 2 and �22 on its own. This lack of closure becomes
more problematic if we control the system away from its

‘‘natural’’ observed state bSBTW. A simple mechanistic
argument partially solves this problem: with hsi denoting
the average cascade size, the balance of sand input and
average dissipation requires 3�hsi ¼ 1 (one grain added
per cascade; three grains shed by toppling; shed grains
dissipate with probability �). Assuming finite-size casca-
des for � > 0 [i.e., ð1� �Þ�22 < 1=2], the expected cas-
cade area satisfies

hai � X1
a¼0

aPðarea ¼ aÞ ¼ G0ð1Þ ¼ c 2½1þ ð1� �Þ�22�
1� 2ð1� �Þ�22

;

(2)

and we know from empirical observations that hsi � hai.
Hence, the criterion for balancing sand, 3�hsi ¼ 1, con-
verts the empirical model EBTW into an intermediatemodel
IBTW, where mechanistic arguments fix �22 in terms of
c 2. Next, we use IBTW to explore controlling the system
SBTW. Later, we derive a fully mechanistic, self-organizing
model MBTW [Eq. (3)] that fixes all unknown parameters.
Control and cost.—Rather than suppressing sandpile

cascades in just a specific region of a lattice [26,27] or
steering the system to a particular state [28,29], here we

control the stationary state bSBTW of SBTW to change the
risk of small and large cascades. Our controller faces
severe constraints: she can neither alter the value of
� > 0, nor the network, nor the cascade mechanism (unlike
in Refs. [30,31]). Instead, the controller can only adjust
where the first grain of sand of a cascade tends to land.
Using some unspecified method, the controller sets the
probability � that the first grain lands on a 2-sand node
and hence causes a cascade (of size �1). This rule defines
the system S�

BTW, which reduces to the uncontrolled
system, SBTW, when � :¼ c 2.
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We obtain the controlled intermediate model I�
BTW

by substituting � for c 2 in IBTW [i.e., Eqs. (1) and (2)
and related], so �22 is determined by � and �. I�

BTW

can accurately predict the cascade size distribution as
one varies � (Fig. 1) without needing to observe �22

empirically, but I�
BTW cannot provide c 2, the fraction of

2-sand nodes.
Increasing � above c 2 is analogous to dropping snow

where avalanches are about to occur and to starting forest
fires in fire-prone areas, with the hope of preventing large
avalanches and large fires in the long run. This strategy of
triggering cascades � ¼ 99% of the time (filled triangles
of Fig. 1) does mitigate large avalanches, at the cost of
causing more small ones (compared to the uncontrolled
case, open circles). The other control strategy, decreasing
� below c 2, is akin to avoiding cascades as much as
possible. Examples include extinguishing all forest fires
or engineering power grids to suppress all blackouts,
including small ones [3]. This strategy (filled squares of
Fig. 1) reduces the frequency of cascades to � ¼ 5%, at
the cost of making the tail heavier.

The phase diagram of I�
BTW (Fig. 2) illustrates the

essential behavior: controlling a subcritical system can
make it critical. For fixed dissipation � and control parame-
ter �, the probability �22 reaches a steady state (dashed
lines). As � ! 0, the steady state collapses to �22 ¼ 1=2
for all fixed � 2 ð0; 1� and for the uncontrolled
system (� :¼ c 2). However, for � > 0, decreasing �
brings the system closer to criticality (darker shade of
background in Fig. 2) and reaches criticality when
� ! 0. Thus, decreasing � to avoid cascades leads to
criticality and hence power-law-distributed event sizes
(Fig. 1, squares). By contrast, increasing � pushes the
stationary state away from the critical line, hence

mitigating large cascades (curve � ¼ 0:99 in Fig. 2 and
triangles in Fig. 1).
Both�> c 2 and�< c 2 have tradeoffs, so under what

conditions is one strategy better? Because sand input
equals average dissipation (1 ¼ 3�hsi), we cannot control
average cascade size hsi using the control parameter �.
However, the cost of a cascade may grow nonlinearly with
cascade size, in which case the average cost depends on�.
Here, we consider two concave cost functions illustrated

in Fig. 3 (inset). First, motivated by the idea that small
catastrophes in infrastructure are inexpensive to handle but
that large disasters become expensive, we define a cost
function with a slopemOK for events smaller than a tipping
point stip and a steeper slopembad for events larger than stip.

Our other cost function grows smoothly as the cascade size
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FIG. 1 (color online). Controlling the frequency of cascades �
significantly affects the cascade size distribution. The chance of
no cascade (i.e., a size-zero cascade) is 1��, while the chance
of a cascade of size � 1 is the control parameter �. In the
original BTW model, � is set to c 2, the fraction of 2-sand
(at capacity) nodes. Symbols denote results of simulations
on random 3-regular graphs with � ¼ 0:05, N ¼ 106,
while dashed and plain lines show the predictions of the inter-
mediate model I�

BTW and of the self-organizing model M�
BTW,

respectively.
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FIG. 2 (color online). Phase diagram of the controlled system
I�
BTW, an approximation of S�

BTW (similar to the diagram in

Ref. [34] except with control). Dashed lines are the system’s
attractors �22 ¼ ð1� 3��Þ=½ð1� �Þð3��þ 2Þ�. For �> 0, the
system is critical only when � ! 0, but as � ! 0 the system
approaches the critical line�critical

22 ¼1=½2ð1��Þ� for all � < 1=2.
In the subcritical regime, darker shades denote proximity to
criticality.
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FIG. 3 (color online). If size-zero cascades confer benefit 1
and if, as justified in the text, costs increase nonlinearly, such as
with tipping points (left inset, thick lines) or as cascade size
raised to a power �> 1 (right inset, dashed lines), then there
may exist a nontrivial, optimal control parameter �� that mini-

mizes the expected cost in the stationary state bS�
BTW of the

controlled SOC system S�
BTW. (Here, �¼0:05 and mOK¼0:07,

mbad ¼ 0:5, stip ¼ 104; c ¼ 0:005, � ¼ 1:5.)
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raised to a power �> 1. [Both cost functions could arise
from risk aversion (extra disutility to bad outcomes) [32],
government penalties for starting cascading failures,
herdlike loss of consumer confidence, and/or indirect costs
of disasters due to interdependencies with human health
and with other infrastructures.] Finally, both cost func-
tions assign a benefit of 1 for size-zero cascades (in
which no nodes topple); this benefit defines the scale of
costs. (Infrastructures and investment portfolios, for
instance, typically profit on uneventful days, yet catastro-
phes incur costs.)

For many parameters, these two concave cost
functions have a nontrivial, optimal control parameter
�� that minimizes the expected cost of cascades in the

stationary state bS�
BTW (Fig. 3). Increasing � above ��

mitigates large cascades but exacerbates small ones
that accrue costs, while decreasing � below �� makes
cascades more rare but enables especially costly, massive
cascades. The Supplemental Material shows evide-
nce that optimal �� is generic for heavy-tailed event
distributions [24].

Finding or avoiding 2-sand nodes becomes difficult
when they become rare or widespread, respectively. To
model this phenomenon, the controller could use her
budget to apply a force f to achieve a � given by, e.g.,
�ðc 2;fÞ :¼ tan�1ðf�cotð�c 2ÞÞ=�þ1=2, so that f ¼ 0
recovers SBTW, and pushing � to 1 or 0 requires infinite
force f. However, I�

BTW does not provide c 2, so a closed
model is needed.
Self-organizing model.—We now introduce a mechanis-

tic, multitype branching processM�
BTW that self-organizes

to a stationary state cM�
BTW without using empirical mea-

surements of SBTW. PGFs predict cascade outcome: w and
x generate the cascade size and area, respectively, while yi
and zi (elements of the vectors y and z) generate the
changes in the numbers of i-sand nodes and of ii-sand
links (edges between two i-sand nodes), respectively.
Unlike I�

BTW, self-consistency here fixes all parameters
c i and �ij: on average, the numbers of i-sand nodes and

of ii-sand links do not change at the stationary state.
Like GðxÞ [Eq. (1b)], the PGF Hðw; x; y; zÞ tracks the

contribution of the cascade’s root

If the root is initially i-sand with i 2 f0; 1g [first term of
Eq. (3)], then it becomes (iþ 1)-sand and does not topple.
Thus, the network has one fewer i-sand node (factor y�1

i )
and one more (iþ 1)-sand node (factor yiþ1). Furthermore,
each link between the root and a j-sand neighbor warrants a
factor z�1

j (respectively, zj) if j ¼ i (respectively, j¼iþ1)
to account for the lost (respectively, new) jj-sand link. Note
that only dyadic correlations (i.e., �ij) are considered.

If the root is initially 2-sand [second term of Eq. (3)],
then it topples n � 1 times (factor xwn) and ends up i0-sand
after the cascade (factor yi0=yi), where n and i0 depend on
the number of grains that the root receives from its neigh-
bors. Hence, a multitype branching process is required to
count back-and-forth exchanges. In general, for a parent
node u with child v, we define a ‘‘type’’ for each combi-
nation (n, n0, i0) such that, in a particular cascade, u sends
(respectively, receives) a total of n � 1 grains toward
(respectively, n0 grains from) v, and, after the cascade, u
has i0 2 f0; 1; 2g grains. The recurrence equation Eq. (1a)
becomes a system of equations for two families of func-

tions and corresponding to the cases n0 ¼ n� 1

and n0 ¼ n, respectively, which are the only possibilities
for treelike graphs (see the proof and full expressions in the
Supplemental Material [24]).

Differentiating Eq. (3) with respect to yi and zi and
setting all generators to 1 gives hðiÞ and �ðiÞ, the average

changes in the numbers of i-sand nodes and of ii-sand
links. By hypothesis, the system has reached the stationary

state, which provides the constraints hðiÞ ¼ �ðiÞ ¼ 08 i 2
f0; 1; 2g. Because the c i are probabilities and the �ij are

conditional probabilities, they obey the additional con-

straints
P

2
i¼0 c i ¼ 1,

P
2
j¼0 �ij ¼ 1 8 i, and c i�ij ¼

c j�ji 8 i, j. Starting from educated guesses, numerical

solution of the system of constraints provides values of c i

and �ij consistent with those observed in the Monte Carlo

simulations of S�
BTW, and it enables exploring ranges of

parameters that would be computationally costly to simu-

late (large N, low �, and/or low �; see the Supplemental

Material [24]). Values of c 2 obtained in this way may

estimate the force f required to achieve some control

parameter �ðc 2; fÞ. Finally, the PGF Eq. (3) distinguishes

cascade size and area (Fig. 4), which to the best of our

knowledge is a new result for BTW cascades on networks.
Future work.—Self-organizing branching processes

could enable control of cascade area: if damage must
occur, perhaps we can isolate it. For SBTW with � > 0, a
noninvasive control scheme cannot reduce the average
cascade size because average sand input must be zero,
but our mechanistic understanding of cascades could allow
for harea=sizei � 1=2 in a treelike network and much
smaller values in networks containing communities [24].
Adjusting the time scales so that more control occurs

between cascades would make this model a dynamic ver-
sion of highly optimized tolerance (HOT) [33] but with
repeated cascades and control. Tuning the time scale

PRL 111, 078701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

16 AUGUST 2013

078701-4



between control and cascades could capture systems rang-
ing from finance and brains (frequent cascades) to power
grids and forest fires (infrequent cascades).
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