
Physics 1, 22 (2008)

Viewpoint

How colloidal dispersions relax under stress
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A shear force can melt a colloidal glass, causing it to flow in a highly nonlinear fashion. Physicists have now
found a way to put the description of this type of flow on a more formal theoretical footing.
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Of the many physical systems that we can study, col-
loids and colloid dispersions may well be one of the
most prevalent in our daily lives. Inks, paints, clays,
emulsions, and milk, as well as surfactant aggregates
(micelles) and nanoparticle suspensions are all colloid
dispersions. The study of how these dispersions and
other complex liquids flow—a field called rheology—is
essentially a problem of nonequilibrium statistical me-
chanics that must account for many-body interactions.
The response of colloid dispersions to a shear force is of-
ten nonlinear and can result in interesting physical phe-
nomena. The application of a shearing force, for exam-
ple, can increase the viscosity of a dispersion, an effect
that can be harnessed to make personal protective de-
vices [1].

Predicting how a colloid dispersion responds to an ex-
ternal stress and connecting this relationship to the mi-
croscopic interactions between the dispersed particles
is a key goal of theoretical rheology. Writing in Phys-
ical Review Letters, Joseph Brader and Matthias Fuchs
of the Universität Konstanz in Germany and Michael
Cates of The University of Edinburgh report the devel-
opment of a rheological constitutive equation for dense
colloidal suspensions and glasses [2] (here, constitutive
refers to the stress-response relationship). The work
links a highly successful microscopic theory, which de-
scribes how colloidal particles become arrested at the
glass transition of a colloid, to a formal description of
suspension rheology. Although this is not the first ef-
fort in this direction [3], the paper by Brader et al. is
an important contribution because it applies to both col-
loidal dispersion and glasses, can describe the response
for nonlinear, arbitrary deformation fields, and satisfies
the criterion that the stresses should be invariant for dif-
ferent reference frames.

The theory of the flow of colloidal dispersion un-
der shear has a rich history that spans over a century.
The field really begins with the seminal work of Ein-

stein in 1906 [4, 5], in which he studied how single-
particle motion contributes to the viscosity of a suspen-
sion. Around the same time, Smoluchowski developed
a statistical description of Brownian motion of colloidal
particles [6]. In the early 1970s, Batchelor formulated
the stress tensor—a matrix whose components describe
the forces acting on the material in all three spatial coor-
dinates—for both hydrodynamic (that is, mediated by
the fluid between the particles) and conserved inter-
actions [7–9]. The past thirty years of theoretical de-
velopment have largely focused on handling the fact
that a concentrated colloid dispersion is a many-body
problem, though the challenge of many-body hydrody-
namic interactions is, in practice, largely resolved [10–
12]. With advanced simulation methods, it is possible
to obtain accurate solutions for sufficiently large ensem-
bles of particles [13, 14], even if analytical calculations
are intractable for all but regular arrays.

One way that many-body interactions affect particle
dynamics is through excluded volume effects that re-
sult from the finite size of the dispersed particles (see
Fig 1, left panel). In a sufficiently dense suspension of
hard spheres, these effects can lead to the formation of
a colloidal glass, a kinetic transition characterized by
“dynamical arrest” of the particle motion [15]. How-
ever, when theories that are based on only pair-wise in-
teractions between particles (rather than a many-body
picture) are extended to concentrated dispersions, they
do not capture this divergence in the viscosity at the
ideal glass transition, but at much higher concentrations
[16, 17].

A promising approach for describing colloidal dy-
namics just above and below the colloidal glass tran-
sition has proven to be mode-coupling theory (MCT).
This theory is an ansatz proposed to handle highly cor-
related systems and can therefore account for the par-
ticle caging shown in the left panel of Fig. 1. The re-
laxation modes of the test particle (the red particle) are
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FIG. 1: The cartoon at left shows how the motion of par-
ticles can become arrested in a colloidal dispersion. The
caging mechanism occurs in concentrated dispersions: a refer-
ence particle (red) is hindered from moving by excluded vol-
ume interactions with its neighbors (blue), that are in turn
are hindered by their neighbors (grey). Caging effects can
make the response of the colloidal dispersion to a time vary-
ing shear force (γ̇) highly nonlinear. The image on the right
shows a simulation of how the microstructure is distorted
in the plane of shear for a concentrated hard sphere disper-
sion under shear flow at a relatively moderate shear rate (see
[11]) [Courtesy of J. F. Brady, CalTech] (Illustration: Alan
Stonebraker/stonebrakerdesignworks.com)

formally coupled to those of the neighbors (blue) com-
prising the cage, which themselves are caged by their
neighbors (grey), ad infinitum. Indeed, MCT has been
shown to accurately model the diffusion of particles, at
equilibrium, and the viscoelasticity for charged sphere
dispersions where hydrodynamic interactions are not
dominant [3, 18–20] The theory also provides a qualita-
tive framework for understanding the linkage between
viscoelasticity and particle “caging” in hard-sphere dis-
persions [21, 22].

In their new work, Brader, Cates, and Fuchs put their
earlier ansatz extending MCT for colloidal suspensions
to nonlinear shear deformations on a more formal foot-
ing. A significant advantage of their approach is that
they fold the successful MCT description of particle dy-
namics into a generalized formulation of the stress ten-
sor (in particular, they use the Green-Kubo formalism
[3]). Their identification of the full tensorial structure
of the theory means it is not restricted to simple shear
deformation. To illustrate their approach, Brader et al.
consider a hard-sphere colloidal glass and calculate the
dynamic yield stress, i.e., the force required to melt the
glass and cause the dispersion to flow, under shear as
well as uniaxial and planar extension flows.

The theory predicts what happens to the microstruc-
ture of a colloidal suspension under an applied defor-
mation (an example of this sort of calculation is shown
in the right panel of Fig. 1). The results could be di-
rectly compared with neutron scattering measurements
of the density distribution in the colloidal suspension
under shear flow [23], as well as against measurements
of the viscoelastic properties [24]. The calculated stress
tensor agrees with previous exact derivations based on
micromechanics [25] in the dilute limit (i.e., when the

many-body direct correlation function reduces back to
the pair potential). Differences should arise for strongly
correlated systems and they can now be rigorously
tested against simulations and experimental measure-
ments. It also remains to formally determine if the
stress tensor and dynamical equation that Brader et al.
have calculated for the nonequilibrium microstructure
are thermodynamically consistent [26].

A further challenge for the theory will be to reproduce
experimental measurements of the divergence in the vis-
cosity for hard-sphere dispersions [27]. These disper-
sions have a large, but finite viscosity for volume frac-
tions above the ideal glass transition, suggesting that
particle motion is activated in a way that is not captured
by MCT [28]. Finally, it will at some point be necessary
to include in the theory the effects of hydrodynamic in-
teractions, which are more significant in strongly shear-
ing or deforming dispersions.

The phase behavior and dynamics of colloidal disper-
sions with attractive interactions are a current topic of
great scientific interest but of even greater importance
in technological practice [29]. The recent successes of
MCT in describing the attractive driven glass transition
in colloidal dispersions [30–33] or the formation of a
colloidal gel [34] suggest that the new formalism pre-
sented here might lead to accurate rheological constitu-
tive equations for these systems, too. Further, with the
formalism developed by Brader et al. it may be possible
to describe time-dependent viscosities that occur in flu-
ids exposed to changing shear (i.e., thixotropy) [35, 36]
as well as ageing effects [37]. Thus, this theoretical ad-
vance opens numerous opportunities for further explo-
rations of the rich behavior of concentrated colloidal dis-
persions.
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