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Large-scale quantum computers are hard to construct because quantum systems easily lose their coherence
through interaction with the environment. Researchers have tried to avoid this problem by using geometric
phase shifts in the design of quantum gates to perform information processing. Experiments and simulations
have shown that these gates may be tolerant to certain types of faults, and may therefore be useful for robust

quantum computation.

Subject Areas: Quantum Information

Peter Shor’s demonstration [1] in the mid 1990s of
an efficient algorithm for factorizing prime numbers
has triggered an immense interest in various aspects of
quantum computation. Researchers have proposed sev-
eral ways to implement quantum computers, ranging
from systems that store information in trapped atoms
[2] or ions [3] to computers based on condensed matter
systems such as Josephson junctions [4] and quantum
dots [5]. Such computers would rely on the phenom-
ena of quantum coherence and quantum entanglement
among a set of such “qubits” (Fig. 1). Despite these ef-
forts, quantum computers of any useful size still seem
far beyond the scope of present day technology, mainly
because of the difficulties in maintaining the necessary
coherence of all the qubits. Achievable error probabili-
ties for qubit manipulations are still far above the value
of ~ 10~* required for efficient fault-tolerant quantum
computation [6]. A key challenge for quantum compu-
tation research is to achieve this precision.

One approach towards this goal is to use quantum
geometric phases (that is, the effects of moving a set
of quantum parameters around a curved parameter
space) [7-9] to implement quantum gates that manip-
ulate states of physical qubits. Such gates would be
the quantum computing equivalent of the logic gates
found on today’s microchips. The idea of using geo-
metric phase is known as holonomic or geometric quan-
tum computation, and has become one of the key ap-
proaches to achieving quantum computation that is re-
silient against errors. In 1999, Zanardi and Rasetti [10]
laid the theoretical foundations of holonomic quantum
computation by showing that any quantum circuit can
be generated by using suitable Hamiltonians that de-
pend on experimentally controllable parameters, such
as those related to the manipulation of a bosonic mode
in a quantum optical system [11]. At the same time,
Jones et al.[12] demonstrated experimentally a quantum
gate based on geometric phase that was able to entangle
a pair of nuclear spins in a nuclear magnetic resonance
(NMR) setup. This experiment provided the first ex-
plicit example of geometric quantum computation and

DOI: 10.1103/Physics.1.35
URL: http://link.aps.org/doi/10.1103/Physics.1.35

1 Bit N Bit
0 1 0 0 1 1 0

Either 0 or 1 One out of 2" possible permutations
1 Bit N Bit
al0p+p1) ,/0000---0)+a,|1100---0}+a,|1110---0) + --- + a,J1111---1)

All of 2" possible permutations

[ 4 I

Both 0 and 1

Quantum Computer

Qubit 1
Qubit 2

Qubit 3 el

Qubit 4 2

. a

H ] ]

. E E'

"1 Qubit N-1

1 QubitN

FIG. 1: Quantum computers operate on a register of quan-
tum objects that store information (qubits). The upper panel
shows the difference between classical bits and qubits. Each
classical bit takes a definite value while quantum bits can be
prepared in superposition of several values forming entangled
states (depicted as tilted bits). The lower panel shows the basic
concept of quantum computation. An input register of qubits,
initialized in some state, is manipulated by a set of quantum
gates (unitary transformations of the qubit states) that act on
one (orange) or two (green) qubits at a time. The result of the
computation is read out at the end of all these processing steps.
[Adapted from [34].] ()

helped to boost the interest in this field.

Holonomic quantum computation

A quantum holonomy or geometric phase is the quan-
tum analogue of a well-known rotation effect in dif-
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ferential geometry that arises when a vector is parallel
transported around a loop on a curved surface (see Fig.
2). This vector may return rotated although there has
been no local rotation along the loop. Such a “global
rotation without local rotation” is the holonomy caused
by the curvature of the underlying space. In quantum
mechanics, states are represented by vectors in a Hilbert
space and rotations of such vectors are given by apply-
ing unitary matrices or phase factors to them. Just as in
the differential geometric case, a quantum state vector
can be transported without locally rotating it around a
loop in some quantum parameter space, and the result-
ing transformation has the same effect on the state vec-
tor as applying a unitary matrix [7] or phase factor [8, 9]
that depends only on the global geometric properties of
the loop.

In the original form of holonomic quantum compu-
tation [10], the states of the quantum bits (the qubits)
are encoded in a degenerate energy eigenspace of a suit-
able parameter-dependent Hamiltonian. When the pa-
rameters change adiabatically around a loop, a state that
starts in such an energy eigenspace of the initial Hamil-
tonian will end at another state in the same eigenspace.
The final and initial states of the qubits will be related
by a unitary rotation that depends only on the proper-
ties of the loop in parameter space, but is independent
of the energy of the state and the time it takes to tra-
verse the loop. This rotation is the desired holonomy
transformation that constitutes the holonomic quantum
gate—the basic building block of holonomic quantum
computation. This is very different from the more con-
ventional kind of quantum computing where qubits in
a register of some kind are acted upon by various logic
operations to dynamically evolve the system in time to-
ward a result. Geometric quantum computation, which
is discussed in the next section, is holonomic quantum
computation, or some nonadiabatic extension thereof,
restricted to nondegenerate (one-dimensional) energy
eigenspaces of Hamiltonians.

In practice, to perform quantum computation it is suf-
ficient to implement certain elementary one- and two-
qubit operations, forming universal sets. These opera-
tions are analogous to the fundamental building block
OR, AND, NOT operations of conventional microelec-
tronics. Such a set of operations on qubits can be used to
simulate any quantum computation with arbitrary pre-
cision. A first goal for holonomic quantum computa-
tion is to find physical implementations of universal sets
of gates that are all-geometric, i.e., based entirely upon
quantum holonomies.

Basically what we are looking for are physical qubits
(two-level quantum systems) whose evolution can be
controlled by means of parameters in a curved space.
Unanyan ef al.[13] discovered that a four-level atom
forming a “tripod” system (see Fig. 3) could represent
a curved parameter space. This system consists of three
degenerate internal atomic states, each state coupled to
an excited state by a laser field. The fields lift the de-
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FIG. 2: Parallel transport of a vector on a curved surface, in
this case a sphere. The transport takes place along geodesic
segments (parts of great circles) forming a loop. The angle be-
tween the vector and each segment is constant (no local rota-
tion). The final vector has been rotated compared to the ini-
tial one, the rotation angle being the solid angle enclosed by
the loop. This “global rotation without local rotation” is the
holonomy caused by the curvature of the sphere. (Illustration:
Alan Stonebraker/stonebrakerdesignworks.com)

generacy of the internal states, but only partially: two of
the energy levels remain degenerate for all field config-
urations. These degenerate levels have zero energy and
do not involve the excited state, i.e., they form a pair of
“dark” states that can be used to encode the states of a
single qubit.

One can perform computation on the qubit if the am-
plitudes and phases of the laser fields are varied around
suitable loops. In this way, one can achieve a pair of
noncommuting holonomic gates that are universal for
the qubit. Next, if the atoms that store the different
qubits are allowed to interact, and the fields are varied
around a suitable loop, the result is an entangling two-
qubit gate of purely geometric origin, which completes
the all-geometric universal set.

Remarkably, the above-described scenario for purely
geometric quantum computation can be implemented
for other quantum gate architectures, such as ion traps
[14], superconducting nanocircuits [15], and semicon-
ductor quantum dots [16]. This has made the tripod
energy-level system the paradigm scenario for holo-
nomic quantum computation.
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FIG. 3: (a) Tripod structure that can be used for holonomic
quantum computation. Three degenerate internal states k =
1,2,3 of an atom, say, are coupled by three laser fields f; to an
excited state e. (b) Two of the resulting energy levels form a
degenerate pair of dark states that encodes the states of a sin-
gle qubit. (c) One-qubit holonomies can be obtained by slowly
varying the strengths and phases of the laser fields so that the
initial and final field configurations coincide. A possible cyclic
variation A — B — C — A in the special case of real-valued
fr is shown. The resulting holonomy is fully determined by
the solid angle 7r/2 which yields a holonomic gate that takes
the logical states |0) and |1) into |1) and —|0), respectively (Il-
lustration: Alan Stonebraker/stonebrakerdesignworks.com)
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Geometric quantum computation

Geometric quantum computation employs one-
dimensional geometric phase factors instead of multidi-
mensional holonomies to achieve universal sets of quan-
tum gates. There are three different ways to achieve
quantum computation based on geometric phases.

First, consider the Berry phase [8], which occurs in sit-
uations like the Aharonov-Bohm setup where a charged
particle confined to a box acquires a geometric phase
while slowly taking the box around a magnetic flux.
Just as in the more general holonomies, described in the
previous section, this phase arises in adiabatic evolu-
tion, but now for nondegenerate eigenspaces of Hamil-
tonians. In fact, the Berry phase can be thought of
as an adiabatic quantum holonomy restricted to a one-
dimensional energy eigenspace.

Berry phases may be used for quantum computation
by encoding the logical states in nondegenerate energy
levels, such as in the spin-up and spin-down states of
a spin—1/2 particle in a magnetic field. When this field
rotates slowly around a loop, the spin states will pick up
Berry phases of magnitude given by half the enclosed
solid angle and of opposite sign, which defines an adi-
abatic geometric phase-shift gate acting on the two spin
states. But these states also pick up different dynamical
phases (due to the Zeeman splitting caused by the mag-
netic field interacting with the spins), which one needs
to compensate for. Jones et al.[12] removed these dy-
namical phases by a clever sequence of radio-frequency
fields interrupted by suitable rr-pulses (which swap the
spin-up and spin-down states) applied to a pair of cou-
pled nuclear spins in an NMR setup.

The second approach to geometric quantum compu-
tation is based on the fact that geometric phases may ac-
cumulate also in nonadiabatic processes [9], as in cases
where the parameters in the Hamiltonian (for instance
the magnetic field in the spin-1/2 system) vary rapidly
in time, causing transitions between different energy
levels. These phases are determined by geometric prop-
erties of loops in the state space, such as the space rep-
resenting the direction of a quantum spin, rather than
loops in a space of slow parameters, such as the direc-
tion of the rotating magnetic field in the above Berry
phase scenario. Compared to the Berry phase, one can
identify two important advantages of nonadiabatic ge-
ometric phases: they can be implemented much faster,
which means that unwanted decoherence effects have
a shorter time to take effect, and they may occur even
if the dynamical phases vanish, which circumvents the
need to introduce complicated techniques to remove
these phases.

The key idea of nonadiabatic geometric quantum
computation is to find paths in state space along which
the dynamical phase is zero. Let us consider a single
qubit whose state space is a two-dimensional sphere,
called the Bloch sphere, where the polar angle 6 (az-
imuthal angle ¢) describes the relative weight (relative
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phase) between the two computational basis states 0 and
1. No dynamical phases occur if we move the qubit
along a great circle (geodesic) on this sphere. Now, con-
sider evolution around a loop consisting of segments of
great circles, forming a geodesic polygon (see Fig. 4). It
results in a phase factor of purely geometric origin, since
the dynamical phase vanishes along each geodesic seg-
ment. The geometric phase becomes half the solid angle
enclosed by the loop on the Bloch sphere.

To see how nonadiabatic geometric quantum compu-
tation [17, 18] can be implemented in a physical setup,
one may think of a spin—1/2 particle in a magnetic field.
If this magnetic field is varied so that it is always orthog-
onal to the evolving spin, the dynamical phase vanishes
and the resulting phase becomes purely geometric. The
sign of the acquired geometric phase depends on the di-
rection of the spin, i.e., a superposition of spin-up and
spin-down states picks up a relative phase that is equal
to the enclosed solid angle carved out by the motion
of the state vector. This phase rotation corresponds to
moving the qubit state in the ¢-direction on the Bloch
sphere (see Fig. 4) and is a nonadiabatic geometric phase
gate, one of the required ingredients for a universal set.

The third way to implement geometric quantum com-
putation is based on the idea that in some cases the
dynamical phase may be proportional to the geomet-
ric phase. For such evolutions, there is no need to re-
move the dynamical phase, as it should show the same
resilience to errors as the geometric phase. This idea
goes under the name unconventional geometric quan-
tum computation [19].

As an example of this, Leibfried et al.[20] performed
an experimental realization of a robust two-qubit phase
gate based on an unconventional geometric phase. They
demonstrated how laser beams can move two beryllium
ions in space and how this motion results in a quan-
tum phase that is conditional on the internal states of the
ions. Zhu and Wang [19] subsequently proved that this
phase was in fact an unconventional geometric phase
being, in this case, equal to the conventional geometric
phase but with a negative sign. The exceptionally high
fidelity of the gate implemented by Leibfried et al.[20]
indicates that unconventional geometric phase scenar-
ios, which have also been proposed for superconducting
[21] and atomic [22] qubits in cavities, could be useful
for quantum computation.

Robustness

Geometric phases and quantum holonomies are
global properties of quantum evolutions and are there-
fore robust to local errors. This is the basic reason for
the conjectured resilience of holonomic and geometric
quantum computation—a conjecture that has been ex-
amined in some detail recently.

To understand how geometric phase ideas can be
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FIG. 4: Loop C (and antipodal image C) on the Bloch sphere
consisting of geodesic segments that enclose the solid an-
gle. The dynamical phases vanish along each segment. The
resulting phases are purely geometric and equal to —1/2
for C and +1/2 for C. The computational states 0 and 1
(such as spin-up and spin-down of a spin—1/2 particle) pick
up geometric phases of opposite sign, which yield a phase
gate fully determined by the solid angle. (Illustration: Alan

Stonebraker/stonebrakerdesignworks.com)

used to achieve error resilience, consider a spin exposed
to a magnetic field that fluctuates around an adiabatic
loop. These fluctuations cause errors in the acquired
phase of the spin. The errors reside only in the dynam-
ical phase since the solid angle of the loop is preserved
on average if the fluctuations are sufficiently random.
Thus, if the dynamical phases can be removed, one can
expect resilience to parameter fluctuations.

Now, the key point is that the influence of dynami-
cal phases on quantum gates can be removed in a sys-
tematic way. There are at least two ways to do this: ei-
ther use spin-echo, or encode qubit states in dark en-
ergy eigenspaces. Spin-echo is achieved by travers-
ing the cyclic evolution twice, with the second appli-
cation in the reverse direction surrounded by a pair of
short rr-pulses that flip the qubit(s), such as in the NMR
setup demonstrated by Jones et al.[12]. This results in
an effective removal of the dynamical phase (including
fluctuation-induced corrections) as this phase becomes
an overall phase with no influence on the gate. Dark
states have zero energy and therefore pick up no dy-
namical phase. Thus, gates based on dark states are au-
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tomatically robust for adiabatic evolution—a robustness
that has been confirmed in simulations of the tripod sys-
tem [23]. These results constitute strong evidence for the
conjectured robustness of holonomic quantum compu-
tation in the case of parameter fluctuations.

Parameter fluctuations, however, are not the only er-
ror source in quantum computation. Errors can also
be introduced via environment-induced decoherence,
i.e., processes where the computational system loses its
coherence through entanglement with its environment.
But decoherence makes it less obvious how to separate
the geometric and dynamical contributions to quantum
gates. These two contributions become fundamentally
intertwined for decohering evolutions of quantum sys-
tems. Therefore, how the geometric phase can protect
quantum information from environment-induced errors
is indeed a subtle issue.

The behavior of the geometric phase in the presence
of decoherence has been analyzed from different per-
spectives recently. Carollo et al.[24] proposed a concept
of geometric phase that is based on the quantum trajec-
tory model. This model starts from an assumption of
Markovian-type evolutions, which can be decomposed
into sets of trajectories of pure state evolutions. Each
such quantum trajectory picks up an error-dependent
geometric phase. The point with this approach is that
it can be used to understand how the effect of different
error sources to the geometric phase or quantum holon-
omy can be prevented. Using this idea, Cen and Zanardi
[25] proposed a method, similar to spin-echo, to prevent
dissipative errors associated with the lowest order tra-
jectories, by traversing the trajectories twice but in the
opposite direction.

Tong et al.[26] introduced a general theoretical frame-
work to study geometric phases for nonunitary evo-
lutions, based on quantum kinematics in interferome-
try. This approach catches another feature of nonunitary
evolution, namely that the state of a quantum system
in contact with an environment must be described by a
density matrix, i.e., a statistical mixture of several wave
functions. When these wave functions evolve, they ac-
quire different geometric phases resulting in an overall
geometric phase being a certain average over the statis-
tical mixture. A key point of this approach is that it is
kinematic, which means that it applies to any form of
underlying dynamics. It has been used to demonstrate
the existence of time [27] and temperature [28] scales on
which the geometric phase is practically unaffected by
decoherence and therefore useful for quantum compu-
tation.

Outlook

Advances in the field of geometric phases and quan-
tum holonomies have led to an interesting merging of
ideas in geometry and computation. We have witnessed
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not only new ways to implement quantum holonomies
and geometric phases in real systems, but also how
these implementations can be used to do robust quan-
tum computation. The results from several groups have
provided novel ideas to address the robustness of geo-
metric phases and holonomic quantum computation.

Experiments on quantum computation using adia-
batic holonomies have so far been limited to the one-
dimensional case: one- and two-qubit gates imple-
mented by geometric phases. A challenge for the fu-
ture is to perform also matrix-valued holonomies in the
laboratory. These are needed for all-geometric univer-
sal quantum computation and have the attractive fea-
ture of being intrinsically robust to dynamical errors.
Therefore, the experimental realization of matrix-valued
holonomies would be a key step towards error resilient
quantum computation.

Another experimental issue worth further investiga-
tion concerns the geometric phase in the presence of
open system effects. Du et al.[29] performed an NMR
experiment to measure the geometric phase for mixed
quantum states, theoretically proposed in [30]. Leek
et al.[31] analyzed experimentally the Berry phase for
a superconducting qubit affected by parameter fluctua-
tions. A challenge for the future would be to extend this
work to more general forms of open system effects, such
as dissipation and quantum jumps. Such experiments
would be useful to test the error resilience of holonomic
and geometric quantum computation in real systems.

Research has reached a level where it becomes rel-
evant to combine holonomic and geometric quantum
computation with other forms of error-avoiding and
error-correcting methods to improve error resilience.
Some steps in that direction have in fact already been
taken. Wu ef al.[32] demonstrated how to combine the
resilience of holonomic quantum computation to pa-
rameter fluctuations with the inherent robustness of de-
coherence free subspaces. Very recently, Oreshkov et
al.[33] demonstrated how to combine holonomic quan-
tum computation with active error correction. It seems
highly desirable to develop these ideas further with the
aim to find ways to reach the required precision for
fault-tolerant quantum computation.
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