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Viewpoint

High-energy physics in a new guise
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The esoteric concept of “axions” was born thirty years ago to describe the strong interaction between quarks. It
appears that the same physics—though in a much different context—applies to an unusual class of insulators.
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In a prescient but until recently largely forgotten 1987
paper, Frank Wilczek [1] analyzed the effect of hypothet-
ical elementary particles called “axions” on the laws of
electricity and magnetism. Axions had been postulated
in 1977 in an attempt to explain the absence of charge-
parity (CP) violation in the strong interaction between
quarks. Wilczek showed that the electrodynamics of ax-
ions can be described if one adds a term of the form
∆Laxion = θ(e2/2πhc)B · E to the ordinary Maxwell La-
grangian that governs the behavior of the electromag-
netic field, where θ describes the strength of the axion
field. Such a term is allowed by symmetry, but causes
nontrivial modifications to Maxwell’s equations.

As far as we know today, axions do not occur in empty
space, and the electrodynamics of these particles ap-
peared to have gone down in history as an interesting
curiosity, not relevant to the universe we live in. In a pa-
per appearing in Physical Review B, however, Xiao-Liang
Qi, Tayor Hughes, and Shou-Cheng Zhang of Stanford
University [2] show that a term ∆Laxion, analogous to
what was predicted in high-energy physics, is present in
the theoretical description of a class of crystalline solids
called topological insulators. The existence of topologi-
cal insulators—materials characterized by a bulk energy
gap and the presence of conducting surface states that
are robust (or “topologically protected”) to impurities
and defects—had been predicted in a series of recent
theoretical works [3–5] and was confirmed experimen-
tally this year in the semiconducting alloy Bi1−xSbx by a
group at Princeton [6]. All of these developments have
propelled axion electrodynamics from an idle curiosity
to an experimentally observable reality. Aside from es-
tablishing the axion term, Qi et al.[2] provide a number
of important insights into the physics of topological in-
sulators and make connections with other known topo-
logical states of matter, notably the quantum Hall liq-
uids.

Wilczek showed that the axion term has two impor-

tant consequences: it modifies Gauss’ law by adding to
the source term an extra charge density, so that∇ ·E = ρ

becomes ∇ · E = ρ− (e2/2πhc)∇θ · B, and revises Am-
père’s law by contributing an additional current density,
so that ∇ × B = ∂tE + j becomes ∇ × B = ∂tE + j +
(e2/2πhc)(∇θ × E + ∂tθB).

The extra charge and current density only appear
when the quantity θ varies in space or time. Of course,
θ in crystalline solids describes something much dif-
ferent than the original “axions” that were hypothe-
sized in high-energy physics. The Stanford group show
that, provided the electrons’ equations of motion are
time-reversal invariant, all three-dimensional insulating
solids can be characterized by a quantized value of the
axion field in their bulk: θ = 2πn, with n integer in or-
dinary insulators, while θ = 2π(n + 1/2) in topolog-
ical insulators. It follows then that θ must vary near
any boundary between two insulators characterized by
different bulk values of θ, and the effects of axion elec-
trodynamics should become apparent in that region of
space.

There is an important subtlety in the above classifi-
cation of time-reversal invariant insulators. It turns out
that while the boundary between either two ordinary or
two topological insulators does not necessarily exhibit
interesting behavior vis-à-vis axion electrodynamics, the
boundary between a topological insulator and an ordi-
nary insulator (or the vacuum, which presumably has
θ = 0) is a very special place where Maxwell laws do
not hold in their conventional form.

The modifications to Maxwell’s equations give rise to
some very interesting phenomena illustrated in Fig. 1.
Perhaps the most remarkable of these is the finding that
the boundary between a topological insulator and a nor-
mal insulator exhibits a quantum Hall effect: when an
electric field E is applied in the plane of the boundary, a
current flows in the direction perpendicular to E (Fig.
1, left). This is a direct consequence of the modifica-
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FIG. 1: A magnetoelectric effect in a topological insulator.
(Left) A quantum Hall effect occurs without strong mag-
netic field when an electric field applied in the plane of
the interface between a topological (red region) and an or-
dinary (blue region) insulator (or vacuum) induces a pre-
cisely quantized current perpendicular to the field. (Right)
A magnetic field applied perpendicular to the same inter-
face introduces (n + 1/2) electrons for each flux quantum
of applied field. The shaded region corresponds to the
charge density, ρ, of the electrons, which mainly concentrates
around the boundary between the two insulators and is largest
where the magnetic field is strongest. (Illustration: Alan
Stonebraker/stonebrakerdesignworks.com)

tion to Ampère’s law. This Hall current is dissipation-
less, a property that could be potentially useful in fu-
ture electronic devices. The magnitude of the current is
given by σHE with the “Hall” conductance quantized as
σH = (e2/h)(n + 1/2). The factor of 1/2 means that the
surface exhibits a fractional quantum Hall effect. It is also
notable that, unlike what is found in two-dimensional
electron gasses, the Hall effect occurs here in the ab-
sence of a strong external magnetic field (although a
weak magnetic field, or another time-reversal breaking
perturbation is needed to determine the direction of the
Hall current [1, 2]).

Similarly, according to the modified Gauss’ law, a
magnetic field applied perpendicular to the plane of the
surface leads to accumulation of charge (Fig. 1, right).
The total accumulated charge corresponds to e(n + 1/2)
per flux quantum of the applied field. Thus, interest-
ingly, one can think of a fractional charge, equal to a
half-integer number of electrons, as being bound to each
flux quantum. In this context, one can hypothesize that,
in analogy with the fractional quantum Hall states, these
flux-charge composites will exhibit fractional exchange
statistics and thus be potentially useful in schemes that
seek to implement fault-tolerant quantum computation
[7, 8]. Finally, the surface of a topological insulator can
rotate the polarization vector of reflected light (Kerr ef-
fect) and would be another experimental signature of
axion electrodynamics in these materials.

What is the microscopic picture for these effects? The
key ingredient is the presence of strong spin-orbit cou-

pling, which typically occurs in crystalline solids that
are made from the heavier elements, such as Pb and Bi.
Under the right conditions, the spin-orbit terms can give
rise to anomalous band structure that can in turn sup-
port topologically robust gapless states at the surfaces of
a bulk insulator. This means that bands associated with
the surface states are guaranteed to meet at a certain
number of points in the surface Brillouin zone, while
the bulk bands remain separated by a gap. These sur-
face states are chiral—specifically, the electron spin and
momentum are aligned—and at low energies resemble
states of massless Dirac fermions, now familiar from the
physics of graphene.

The precise definition of the topological insulator in-
volves counting these surface states: an odd number
corresponds to a topological insulator, whereas an even
number implies ordinariness [3, 4]. That number N is
also related to θ from the above discussion of axion elec-
trodynamics. Specifically, it holds that N = θ/π. Re-
markably, whether N is odd or even depends only on
the bulk properties of the insulator. This situation is
reminiscent of the integer quantum Hall systems where
the number of chiral edge states is determined by the
bulk Hall conductance. In fact, Qi et al. make this con-
nection more transparent by deriving the topological in-
variant of a three-dimensional insulator from the ficti-
tious four-dimensional quantum Hall system employ-
ing an ingenious procedure of dimensional reduction.

Having an odd number of chiral Dirac fermions at
a surface is itself odd. In fact, the famous Nielsen-
Ninomyia “no-go” theorem [9] states that under very
general conditions such Dirac fermions must always
come in pairs of opposite chirality, e.g., as they do in
graphene. A topological insulator evades this theorem
by spatially separating the states of opposite chirality so
that they appear on its opposite surfaces. In this way
the three-dimensional system as a whole satisfies the no-
go theorem but its surfaces, when viewed in isolation,
seemingly violate it. Qi et al. explain how the axion phe-
nomenology discussed above arises at the microscopic
level from the odd number of topologically robust chi-
ral surface states.

The anomalous surface states that are characteristic of
topological insulators have other possible applications
that go beyond axion electrodynamics. An example is
the proposal put forward by Fu and Kane [10] to pair the
surface electrons of a topological insulator into a super-
conducting state by means of the proximity effect. Ow-
ing to the chiral nature of the surface electrons, this su-
perconducting state has unusual topological excitations,
with just the right properties to be potential fundamen-
tal blocks for quantum computers [7].

The unusual phenomenology of topological insula-
tors arises from the interplay between their unique
band structure and the well understood physics of spin-
orbit coupling. Thus, remarkably, these systems can
be thought of as weakly interacting in the sense that
electron-electron interactions play no significant role.
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Ever since Anderson’s famous 1972 essay “More is dif-
ferent” [11], no condensed-matter physicist has doubted
the virtually limitless potential for discovery of new
phenomena in interacting quantum many-body sys-
tems. That something radically new can appear even
in noninteracting systems came both as a great surprise
and a promise that profound discoveries can be made
where no one expects them.
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