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Viewpoint

Topological states of quantum matter
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Electrons in graphene can be described by the relativistic Dirac equation for massless fermions and exhibit a host
of unusual properties. The surfaces of certain band insulators—called topological insulators—can be described
in a similar way, leading to an exotic metallic surface on an otherwise “ordinary” insulator.
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Most quantum states of matter are categorized by the
symmetries they break. For example, the crystallization
of water into ice breaks translational symmetry or the
magnetic ordering of spins breaks rotational symmetry.
However, the discovery in the early 1980s of the inte-
ger and fractional quantum Hall effects has taught us
that there is a new organizational principle of quantum
matter. In the quantum Hall state, an external mag-
netic field perpendicular to a two-dimensional electron
gas causes the electrons to circulate in quantized orbits.
The “bulk” of the electron gas is an insulator, but along
its edge, electrons circulate in a direction that depends
on the orientation of the magnetic field. The circulat-
ing edge states of the quantum Hall state are different
from ordinary states of matter because they persist even
in the presence of impurities. The reason for this is best
expressed mathematically (it is related to the quantiza-
tion of Berry’s phases, see, for example, Physics Today
August 2003 [1]), and is not intuitively obvious, but the
effect—circulating current—is real and measurable.

In the last few years, a number of theorists realized
that the same “robust” conducting edge states that are
found in the quantum Hall state could be found on
the boundary of two-dimensional band insulators with
large spin-orbit effect, called topological insulators. In
these insulators, spin-orbit effects take the role of an
external magnetic field, with spins of opposite sign
counter-propagating along the edge [2-5]. In 2006, my
colleagues and I predicted this effect (later confirmed)
on the edge of HgTe quantum wells [2, 3]—the first
experimentally realized quantum spin Hall state. In
2007 Liang Fu and Charles Kane of the University of
Pennsylvania predicted that a three-dimensional form
of the topological insulator with conducting surface
states could exist in Bi1−xSbx, an alloy in which spin-
orbit effects are large [6]. Earlier this year, photoemis-
sion measurements of the surface of Bi1−xSbx supported

this picture [7], strongly suggesting that Bi1−xSbx is the
first realization of a topological insulator in three dimen-
sions and that its surface is a topological metal in two
dimensions. Now, in an article appearing in the current
issue of Physical Review B[8], the same authors and Jef-
frey Teo present a detailed calculation of the electronic
structure of the surface states in this material that can be
directly tested in future experiments.

To understand why the surface of Bi1−xSbx is exotic,
it helps to think about what a surface is like in a “nor-
mal” insulator. Recall that the surface and bulk states of
electrons inside crystalline solids are described by wave
functions obtained from solving Schrödinger’s equa-
tion. This quantum mechanical framework predicts that
there are gaps in the electronic energy spectrum where
no wave solutions are possible inside the bulk crystal.
If the Fermi level lies inside this energy gap (or “band
gap”), the solid is insulating. However, dangling bonds
or a reorganization of atoms on the surface can intro-
duce states that have energies that lie within the for-
bidden energy gap, but are restricted to move around
the two-dimensional surface. In most situations these
conducting surface states are very fragile and their ex-
istence depends on the details of the surface geometry
and chemistry. In contrast, in a topological insulator,
these surface states are protected, that is, their existence
does not depend on how the surface is cut or distorted.
Again, the reason for this is, at its root, mathematical,
and lies in the fact that the Hamiltonian describing the
surface states is invariant to small perturbations.

The concept of a topological insulator is perhaps con-
fusing, because when we think of two objects as topo-
logically distinct, we imagine the difference between
say, a Möbius strip and a rubber band (Fig. 1). We
can’t deform one into the other. The same is true for
the Hamiltonian that describes a topological insulator:
the Hamiltonian permits conducting states that circulate
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along the edge (in a two-dimensional insulator) or the
surface (in the three-dimensional case) and no simple
deformation to the edge (or surface) can destroy these
conducting states. Moreover, the conducting states are
real and can be measured, and in the case of the quan-
tum spin Hall state, are naturally spin polarized, which
can have interesting applications in spintronics.

What’s special about the surface of Bi1−xSbx that it
has these properties? It turns out that the surface states
of this alloy are similar to the two-dimensional states in
graphene. Near the Fermi level, electrons and holes in
graphene are described by energy states that are linear
in momentum. Electrons with a constant velocity are
conveniently described by the relativistic Dirac equa-
tion for massless fermions. (The electrons in graphene
are not actually massless; the linear bands result from
the atomic structure of this two-dimensional system.) In
two-dimensional k-space, the dispersion relation looks
like two cones that meet at discrete (Dirac) points at
the Fermi level. However, while graphene has an even
number of Dirac points at the Fermi level, Bi1−xSbx has
an odd number. Kramers theorem tells us that the de-
generacy of states with an even number of electrons that
obeys time reversal symmetry will always be lifted. For
this reason, the surface states in graphene are easily de-
stroyed because a gap will open (they are “topologically
trivial”) while the surface states of Bi1−xSbx are said to
be “topologically protected” [? ] (see Fig. 1). In fact, in
graphene, if one distorts the energies of the two carbon
atoms in one unit cell relative to each other, the Dirac
points disappear immediately. In contrast, the massless
Dirac states on the surface of Bi1−xSbx are robust, even
if the surface itself is slightly imperfect or possesses im-
purities.

In their paper, Teo et al. use a tight-binding model
(a well-established method for determining the band
structure in an insulator) that they solve numerically
to determine the electronic structure on a particular
Bi1−xSbx surface. The model reproduces the surface
structure of Bi1−xSbx and the authors can determine
which surfaces will behave as topological metals. How-
ever, the paper also makes general symmetry arguments
that are model independent that could potentially be
applied to determine if other materials are good candi-
dates for topological insulators.

Topological quantum states of matter are very rare
and until recently the quantum Hall state provided the
only experimentally realized example. The application
of topology to physics is an exciting new direction that
was first initiated in particle physics and quantum field
theory. However, there are only a few topological effects
that have been experimentally tested in particle physics.
Topological states of quantum matter now offer a new
laboratory to test some of the most profound ideas in
mathematics and physics. In 2007, the theoretical pre-
diction and experimental observation of the quantum
spin Hall state—a topological insulator in two dimen-
sions—in HgTe quantum wells was highlighted as one

FIG. 1: When we think of topology, we normally think of ob-
jects that cannot be simply transformed into each other, such as
a rubber band and a Möbius strip (top). The metallic surface of
a topological insulator is different from an ordinary surface be-
cause its metallic nature is protected by certain symmetry in-
variants. In this sense, it cannot be simply transformed into the
surface of a normal insulator. The sketches (bottom) show the
electronic structure (energy versus momentum) for a “trivial”
insulator (left) and a strong topological insulator (right), such
as Bi1−xSbx. In both cases, there are allowed electron states
(black lines) introduced by the surface that lie in the bulk band
gap (the bulk valence and conduction bands are indicated by
the green and blue lines, respectively). In the trivial case, even
a small perturbation (say, changing the chemistry of the sur-
face) can open a gap in the surface states, but in the nontrivial
case, the conducting surface states are protected. Note that in
the topological insulator, the surface states are linear in mo-
mentum and meet at an odd number of points in k-space. (Il-
lustration: Alan Stonebraker/stonebrakerdesignworks.com)

of the top ten breakthroughs among all sciences [2, 3, 9].
Topological states of quantum matter are generally

described by topological field theories. Readers may al-
ready be familiar with Maxwell’s field theory describ-
ing the electromagnetic fields and Einstein’s field the-
ory describing the gravitational fields. These field theo-
ries depend on the geometry of the underlying space. In
contrast, topological field theories do not depend on the
geometry, but only on the topology of the underlying
space.

One of the most striking predictions of topological
field theory is the so-called topological magnetoelectric
effect, where an electric field induces a magnetic field
along the same direction inside a topological insulator,
with a constant of proportionality given by odd multi-
ples of the fine structure constant [13]. Such a predic-
tion can be readily tested in Bi1−xSbx . Although the
tight-binding model that the authors use to calculate the
electronic band structure for Bi1−xSbx is more compli-
cated that that for HgTe, and there are some quantita-
tive disagreements with the first principle calculations,
its essential properties can be understood with a simple
topological field theory.

Now that two topological states of quantum mat-
ter have been experimentally discovered—the quantum
Hall and the quantum spin Hall states—one may nat-
urally wonder about how they would fit into a bigger
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unifying picture. For example, the periodic table gives
an organizational principle of all elements, and sym-
metry principles fit all elementary particles into their
right places. The paper from the Kane group suggests
that what we know about topological insulators may be
just the tip of the iceberg and that other classification
schemes exist as well. Once we discover the deeper or-
ganizational principle of topological states of quantum
matter, we may be able to predict many more, each with
its own unique and beautiful properties.
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