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Viewpoint

Statistics and the single molecule
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Current technology permits tracking single molecules with exquisite precision, but the results need to be in-
terpreted with care. Long-duration measurement of the motion of a single particle yields information that is
different and complementary to that obtained from an ensemble average of many particles.
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One hundred years ago, the atomic-molecular theory
of matter was having a hard time, and many physi-
cists considered it merely a kind of convenient short-
hand rather than a real description of nature; after
all, nobody had really seen a molecule, let alone an
atom. Today, developments in micromanipulation and
in single-molecule tracking have not only made individ-
ual molecules visible, but have led to real breakthroughs
in understanding of the molecular basis of life. This
ability to follow and to manipulate single molecules has
opened new perspectives in nanoscience and nanotech-
nology. Experts in single-molecule tracking often say
that observation of individual trajectories gives more in-
formation about the system than only looking at ensem-
ble averages, which is the approach taken in statistical
thermodynamics. The idea is that the closer one looks,
the more information one can get.

In a paper published in Physical Review Letters how-
ever, Yong He, Stanislav Burov, Ralf Metzler, and Eli
Barkai (at Bar Ilan University in Israel and the Tech-
nical University of Munich) show that the information
obtained in such single-particle experiments is different
from that given by the ensemble-averaged cases, so one
has to be careful about interpreting the results [1]. This
is especially the case when the measured motion ex-
hibits subdiffusion (a process that is slower than normal
Fick’s law diffusion) that might be nonergodic (the time
and ensemble averages give different answers). This
situation is often encountered in both nonliving phys-
ical systems such as disordered semiconductors and
groundwater motion in geophysical formations, and in
the crowded interiors of living cells.

He et al. base their theoretical analysis and numerical
simulations on the so-called continuous-time random
walk (CTRW) model, first introduced by Montroll and
Weiss in 1965 [2]. CTRW was developed to handle a va-
riety of complex diffusion processes by considering the

motion of particles on lattices (Fig. 1). The importance
of the model became clear after Scher and Montroll [3]
successfully used it in 1975 to explain dispersive charge
carrier transport in strongly disordered semiconductors
(the ubiquitous working media of copy machines and
laser printers). In the CTRW model, a particle hardly
moves most of the time, and only occasionally gets an
opportunity to jump to a new location. The motion is
therefore described as a sequence of jumps into differ-
ent directions interrupted by periods during which the
particle is just waiting for the next jump.

Simple random walks were first discussed by
Rayleigh [4] who concentrated on the dependence of the
quantities of interest on the number of jumps. The the-
ory of continuous-time random walks instead concen-
trates on the temporal aspect of the problem. If there
exists a well-defined mean waiting time, the overall dis-
placement follows the normal diffusion, in which both
the mean squared displacement in the absence of the
external force 〈x2(t)〉 ∼= Dt (where D is the diffusion
coefficient), and the mean displacement 〈xF(t)〉 ∼= µFt
(where µ is the mobility) under the action of the constant
external force F are proportional to each other and both
grow as the first power of the time t. A venerable ex-
ample is the one that captured Einstein’s attention: col-
loidal particles undergoing diffusive Brownian motion,
while at the same time falling downward due to gravity.

This proportionality has deep roots in the behavior of
physical systems close to thermodynamic equilibrium;
the mobility µ and the diffusion coefficient D are not
independent, but are connected to each other by Ein-
stein’s relation D = kBTµ. In normal diffusion the “av-
erage” can be understood either as an ensemble average
〈x2(t)〉ens over a large ensemble of moving particles, or
as a temporal moving average 〈x2(t)〉tavg over a very
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FIG. 1: In continuous-time random walks, the walker’s po-
sition is governed only by the number of preceding steps.
This number of steps n(t) constitutes the operational time
of the problem as recorded by the walker’s own clock,
which ticks once each time n is incremented. Since n(t)
grows slower than linearly with the physical (clock) time,
this watch is always behind, leading to the overall subd-
iffusive behavior, as compared with the otherwise normal
random walk. He et al. have used this model to study
time-averaged single-molecule behavior in comparison with
ensemble averages of many molecules. (Illustration: Alan
Stonebraker/stonebrakerdesignworks.com)

long trajectory of motion of duration tavg for a single
particle. Normal Fick’s law diffusion is an ergodic pro-
cess (that is, both averages give the same result).

Strange things happen when the calculated mean
waiting time diverges, as was the case with the car-
rier transport investigated by Scher and Montroll where
the probability density followed a power law propor-
tional to t−1−α. When 0 < α < 1, the system is said
to exhibit subdiffusion, characterized by 〈x2(t)〉ens ∝
〈xF(t)〉ens ∝ tα in the ensemble average. Apart from dis-
ordered semiconductors, the CTRW model with power-
law waiting-time distribution adequately describes such
different phenomena as the spread of pollutants in un-
derground water (where the particles can be caught in
stagnant regions of the flow), and many biological sit-
uations in the interior of living cells, where the motion
is strongly hindered by a bulky cytoskeleton and by the
existence of other huge molecules around the molecule
we are interested in.

Because nothing happens between the jumps in the
CTRW model, it is the number of jumps that is the ap-
propriate internal time variable describing the process,
its so-called operational time. If a well-defined mean wait-
ing time τ exists, the diffusion is normal, since both
〈x2(t)〉 and 〈xF(t)〉 are proportional to the mean num-
ber of steps n, which in turn goes as t/τ. In the case
of anomalous diffusion, the mean squared displacement
and the mean displacement under a constant force are

still proportional to each other, but the number of steps
shows a different time dependence going as n ∝ tα.

In the case of disordered semiconductors, the ensem-
ble average makes sense owing to the multiparticle na-
ture of the physical quantity of interest, namely, the elec-
tric current in the form of simultaneous motion of many
charge carriers. On the other hand, in single molecule
experiments the time average is often used. In their pa-
per, He et al. show that in some cases the results of ex-
periments on mRNA molecules and lipid granules are
well described by the CTRW model and thus an en-
semble average will differ from the single-particle time
average. Contrary to what might be expected, one ob-
serves in the time-averaged picture not anomalous dif-
fusion, but normal diffusion, albeit with strongly fluc-
tuating diffusion coefficient. The result is easy to grasp.
The mean squared displacement during the time inter-
val t between the two instants t1 and t2 = t1 + t is gov-
erned by the number of steps that occur in between.
This grows on the average as n(t) = n(t2) − n(t1) ∝
(t1 + t)α − tα

1 , i.e., approximately as tα−1
1 for t � t1.

This proportionality to t also survives after temporal in-
tegration assumed by the moving time average, giving
rise to the overall seemingly normal diffusion behav-
ior δ2(t) = 〈x2(t)〉tavg ∝ t (where δ2(t) is the mea-
sured mean squared displacement) as opposed to the
ensemble-averaged 〈x2(t)〉ens ∝ tα. So, we can be fooled
by a single-molecule measurement into thinking that the
entire ensemble is undergoing normal diffusion.

My colleagues and I found this basic result recently
[5], [6] and used it to show that the standard models of
potential landscapes are unable to describe equilibrium
fluctuations in peptides. However, He et al. have gone
much further in their discussion. In particular they gen-
eralized Einstein’s relation for a given specific situation,
and moreover discuss in detail the distribution of mea-
sured mean squared displacement δ2(t), which can be
considered as a proxy for the distribution of the diffu-
sion coefficients measured in experiment.

I would like to stress the aspect of universal fluctuations
connected with this distribution. Typically, in ergodic
systems, the longer the averaging time, the narrower is
the distribution of the result. For example, the mean
squared displacement measured as the moving time av-
erage for given time-lag t in the normal diffusion ap-
proaches a deterministic value δ̄2 = 〈x2(t)〉ens when the
averaging time grows, tavg → ∞. The width of the dis-
tribution of the relative result δ2/δ̄2 tends to zero. In
the case of subdiffusion considered above, the width of
the distribution of δ2/δ̄2 stagnates, and increasing mea-
surement time does not improve the result. The overall
distribution of δ2/δ̄2 tends to a universal form depend-
ing only on the exponent α (which contains the specific
details of the system).

Being unaware of this nonergodicity, one could come
to the wrong conclusion that the system under investi-
gation is inhomogeneous, i.e., that each of different ran-
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dom walkers tracked is physically different, or, math-
ematically speaking, their motions correspond to real-
izations of different random processes (normal diffusion
with different diffusion coefficients). However, in real-
ity what we see is different realizations of the same ran-
dom process corresponding to subdiffusion. The overall
behavior strongly resembles what has been found in bi-
ological experiments (e.g., when following the motion
of single viruses in the cell [7]), although one has always
to be extremely cautious when comparing the results of
theories based on one mechanism or cause, when in fact
experiments are influenced by many different factors.

There is another important and interesting result re-
ported by He et al.[1]. Up to now, we have discussed the
situation in an infinite system, when the walkers’ mo-
tion is not restricted by any boundaries. The cells, on
the contrary, are not only finite but relatively small. As
we have seen, the time moving average in the infinite
system exhibits normal diffusion (although the underly-
ing process is anomalous). In a finite system, we still see
hints of the underlying anomalies, as the authors show
by direct numerical simulation of the time-averaged
CTRW on a relatively small one-dimensional lattice. The
results of these simulations resemble strongly the obser-
vations of Golding and Cox [8] on the motion of mRNA
molecules inside bacterial cells and can probably ex-
plain these findings (although here one has to be cau-
tious, too).

Statistical thermodynamics typically deals with sys-

tems that rapidly relax to equilibrium or to a station-
ary state, implying the system is ergodic. Systems
far from equilibrium or showing very slow relaxation
may be nonergodic, and subdiffusion as modeled by
CTRW may be one of the simplest theoretical examples.
One has to be cautious when applying our intuition
gained for the close-to-equilibrium cases to such pro-
cesses: the information contained in the time-averaged
and ensemble-averaged results is different and is perti-
nent to different aspects of the system’s behavior. Un-
derstanding this fact is necessary when interpreting the
results of existing experiments and when planning fu-
ture studies.
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