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Topological Insulators Turn a Corner
Theorists have discovered topological insulators that are insulating in their interior and on
their surfaces but have conducting channels at corners or along edges.

by Siddharth A. Parameswaran∗ and Yuan Wan†

I dentifying new phases of matter that have unusual
properties is a key goal of condensed-matter physics.
A famous recent example is the theoretical prediction
of crystalline materials known as topological insulators

(TIs), several of which have now been identified in the labo-
ratory [1]. TIs are electronic insulators in their d-dimensional
interior (bulk) but allow metallic conduction on their (d− 1)-
dimensional boundaries. This is because in their bulk these
materials have an energy gap between the ground and first
excited states of electrons, but at their boundaries electrons
can move, and hence conduct charge, without paying an en-
ergy penalty. Such “gapless” boundary states are unusually
robust to the detrimental effects of impurities, and they are
responsible for exotic properties that emerge when TIs are
coupled to magnets or superconductors. For instance, they
endow superconducting vortices with “non-Abelian” quan-
tum statistics that could make the vortices a robust platform
for quantum computing.

Now, four teams of researchers [2–6] have identified a new
class of TIs in dimensions d > 1. These “higher-order” [6]
TIs have (d − 1)-dimensional boundaries that, unlike those
of conventional TIs, do not conduct via gapless states but
instead are themselves TIs. An nth order TI instead has gap-
less states that live on (d − n)-dimensional subsystems. For
instance, in three dimensions, a second-order TI has gap-
less states located on 1D "hinges" between distinct surfaces,
whereas a third-order TI has gapless states on its 0D corners
(Fig. 1). Similarly, a second-order TI in two dimensions also
has gapless corner states. Such higher-order systems consti-
tute a distinctive new family of topological phases of matter.

There are several features that one would desire in a
theoretical construction of a new topological phase. First,
the phase should be realized in simple models. Second,
the symmetries necessary to protect conduction via the
phase’s boundary states, and thereby its topological prop-
erties, should be identified. Third, the phase should admit
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Figure 1: Usually, 3D topological insulators conduct via gapless
states on their 2D surfaces but are insulating in their bulk (left).
Recently proposed second- and third-order 3D TIs have gapless
states on their 1D hinges (middle) or 0D corners (right),
respectively, and they constitute a new class of topological phases
of matter. (APS/Alan Stonebraker)

an effective description that is insensitive to microscopic de-
tails—for TIs, such a description is usually a field theory
that captures a quantized response of the material to ex-
ternal fields. Finally, its gapless boundary states shouldn’t
come from run-of-the-mill surface physics, but rather from a
topologically nontrivial bulk. Naively, however, it seems as
though one could simply circumvent all of these challenges
and build, for example, second-order TIs by “decorating”
edges or surfaces of conventional (topologically trivial) 2D
or 3D insulators with 1D or 2D TIs. However, this does
not work in general; for example, if each edge of a finite
2D system is decorated with a 1D TI, each of the system’s
four corners will then host a pair of gapless states, one from
each edge. Yet in many cases, a single state that is gapless in
isolation is destroyed when it encounters another. So in our
example, the corners will generically have a gap to electronic
excitations.

This failed attempt carries two lessons that succinctly cap-
ture the challenge of constructing higher-order TIs: first, not
all lower-dimensional TIs are automatically good building
blocks with which to construct higher-order TIs, and second,
additional symmetries may be necessary to stabilize gapless
boundary states. The four research groups take distinct ap-
proaches to this problem; when combined, the approaches
have all the desirable features outlined above.

physics.aps.org c© 2017 American Physical Society 11 December 2017 Physics 10, 132

http://alanstonebraker.com
http://physics.aps.org/


Wladimir Benalcazar at the University of Illinois at
Urbana-Champaign and colleagues [2, 3] build on the obser-
vation that several distinct known topological quantization
phenomena can be unified in terms of a generalized bulk
dipole moment in d dimensions that is quantized. Ex-
amples of such phenomena are the charge polarization in
crystals [7], the Hall conductance in two-dimensional Chern
insulators with broken time-reversal symmetry [8], and the
magnetoelectric polarizability in 3D TIs [9]. These phenom-
ena are also linked to the existence of (d − 1)-dimensional
gapless boundary states. Benalcazar and colleagues [2, 3] ask
the natural question of whether this picture of a quantized
dipole generalizes to quantized quadrupole and octupole
moments, and they answer it in the affirmative using an
effective-field theory. This allows the researchers to iden-
tify phases whose hinges and corners have gapless degrees
of freedom. Crucially, they show that these moments are ro-
bustly quantized only in the presence of various crystalline
symmetries and that the gapless states at hinges and corners
cannot emerge in isolation—their existence is inextricably
tied to that of a bulk topological phase. The quantized mo-
ments are, in turn, related, like charge polarization [7], to
topological properties of an electron’s wave function, the
most familiar of which is known as Berry’s phase. This quan-
tity and its relatives are topological invariants—meaning
that they are insensitive to “smooth” changes in material
properties—and describe how the electronic wave functions
behave as their momenta are varied over the “Brillouin
zone,” the periodic set of momentum values allowed inside
a crystal.

Both Benalcazar and colleagues [2, 3] and Zhida Song
from the Chinese Academy of Sciences in Beijing and col-
laborators [4] leverage an alternative description of TIs that
allows the researchers to deduce the material’s properties
from the structure of their “Wannier orbitals.” These real-
space objects resemble the orbitals in atoms and molecules,
and like the momentum-space wave functions, they are also
sensitive to Berry phases. Song and co-workers, in partic-
ular, use this approach to propose a simple example of a
2D “corner TI”—a 2D TI with gapless modes on its corners
but not its edges—whose Wannier orbitals are centered at
high-symmetry points that are distinct from the material’s
atomic lattice sites. Although Wannier orbitals are normally
defined using periodic boundary conditions, their topolog-
ical properties may be reflected in the behavior of samples
with physical boundaries. In the corner TI example, when
a finite sheet of the material preserves the symmetry of 90◦
rotations about such high-symmetry points (for example, if
the sample has a square shape), then, intuitively, each of the
four corners linked by such rotations has a quarter of an elec-
tronic Wannier orbital of the periodic system, giving rise to
gapless states. This intuitive picture can be made rigorous
by analyzing properties of the Wannier orbitals [2, 3].

Josias Langbehn and others at the Free University of

Berlin [5] adopt a slightly different route, similar in spirit
to the thought experiment sketched earlier in this article.
They build second-order TIs by developing an algorithm
for “gluing” (d − 1)-dimensional TIs to (d − 1)-dimensional
boundaries of d-dimensional conventional insulators in a
manner that preserves gapless corner or hinge states. Build-
ing on a recent classification [10] of reflection-symmetric TIs,
they elucidate how second-order TIs fit into the existing
topological classification of insulators and show that various
crystalline-symmetry requirements could be relaxed while
preserving the surface conduction. This is an important step
in widening the experimental relevance of higher-order TIs
because such symmetries can be very difficult to realize as
exact symmetries of a material.

Finally, Frank Schindler at the University of Zurich and
colleagues [6] use a mix of these techniques to study two
different types of second-order TIs in 3D: ones with “chiral”
hinge states, in which electrons flow in only one direction,
and “helical” ones, in which the electrons propagate in both
directions but with their spin locked to their direction of
motion. These behaviors parallel those of electrons in the
1D edge states of the 2D integer quantum Hall phase and
in 2D TIs, respectively. Excitingly, Schindler and colleagues
suggest candidate solid-state materials that could host these
new phases. These candidate materials belong to classes of
materials that are known to be fertile sources of TI physics,
and they can be readily studied with a wealth of existing ex-
perimental techniques.

We have not discussed various other elegant results from
these new studies, such as the classification of higher-order
TIs [5, 6] and the derivation of simple formulae for de-
termining the topological invariants that distinguish them
from conventional insulators [4]; we direct the reader to the
original articles for details. The work suggests several ex-
citing new directions; for instance, it will be interesting to
generalize these ideas from the current setting of noninter-
acting fermionic systems to interacting systems of fermions
or bosons (Song and colleagues have already taken first steps
towards this [4]). On the experimental side, there are now
both candidate solid-state materials [6], as mentioned ear-
lier, and specific proposals to engineer higher-order TIs in
cold atomic gases and photonic systems [2, 3], along with re-
alistic protocols for detecting corner and hinge states [2, 3, 5,
6]. While, just as in ordinary TIs, the protected conduction
and other unusual properties of these new TIs might find ap-
plications, these new discoveries are really of a fundamental,
rather than applied, nature. All in all, these works remind us
that there may yet be surprises in store as we delve deeper
into the study of topological matter.

This research is published in Science, Physical Review Letters,
and Physical Review B and posted on the arXiv.
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