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Neural Networks Identify Topological

Phases

A new machine-learning algorithm based on a neural network can tell a topological phase of

matter from a conventional one.

by Juan Carrasquilla*

detailed characterization of phases of matter is

at the forefront of research in condensed-matter

and statistical physics. Although physicists have

made incredible progress in the characterization
of a wide variety of phases, the identification of novel topo-
logical phases remains challenging. Now, Yi Zhang and
Eun-Ah Kim from Cornell University, New York [1], have
taken a big-data approach to tackling this problem. In their
work, thousands of microscopic “images” or “snapshots”
of a phase, created using a special topography procedure,
are fed into a machine-learning algorithm that is trained to
decide whether these images come from a topological or a
conventional phase of matter—exactly as modern computer
vision algorithms are designed to tell cats from dogs in a pic-
ture.

Traditionally, phases of matter are differentiated by their
symmetry properties [2]. For example, water in its liquid
and vapor forms is more spatially symmetric on average
than in its solid counterpart, in which water molecules
form crystal structures. Also, ferromagnets, which are often
found holding notes on refrigerator doors, are magneti-
cally ordered materials that, upon heating, transition to a
more magnetically symmetric state in which they lose their
ability to stick to some metallic surfaces. By contrast, topo-
logical phases of matter are distinguished through more
abstract mathematical constructions called topological in-
variants. These are linked to large-scale features of objects
[2]. For instance, if viewed by a topologist’s eyes, a dough-
nut is the same as a coffee cup, because they both have just
one hole. But a pretzel, which has two or three holes in it, is a
topologically different object. In other words, the number of
holes is a topological invariant. Amazingly, similar topolog-
ical fingerprints emerge in real materials and in theoretical
models of condensed-matter phases, such as quantum Hall
states, topological insulating phases, spin liquids, and many
other examples [2] (see Collection on Topological Phases).
But the unequivocal identification of these topological mark-
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Figure 1: Zhang and Kim’s machine-learning algorithm for
identifying a topological phase of matter involves a procedure
called quantum loop topography (QLT). The procedure builds a
multidimensional image from several adjacent, triangular loops
located at the pixels of snapshots of the phase’s electronic density
(only one such snapshot is shown here). The QLT image is then
fed into a neural network that is trained to determine whether the
image corresponds to a topological phase or not. (Adapted from Y.
Zhang and E.-A. Kim, Phys. Rev. Lett. (2017) by APS/Alan
Stonebraker)

ers, both in experiments and simulations, remains hard. The
experiments require challenging electronic transport and in-
terference measurements, as well as in situ images, of the
materials that host the topological phases, whereas the sim-
ulations require numerically intensive calculations.

To identify conventional phases, physicists typically rely
on theoretical ideas such as the order parameter, which rep-
resents the degree to which a physical system is ordered, as
well as on experimental quantities such as the specific heat
[2]. For topological phases, which often lack local order
parameters, physicists appeal instead to specific response
functions and surface states [2, 3], or when available, to non-
local properties such as quantum entanglement [4].

More recently, however, there has been a concerted ef-
fort towards applying machine-learning ideas to the clas-
sification and identification of phases in condensed-matter
physics [5-10]. Preliminary results suggest that conventional
machine-learning algorithms, including those based on neu-
ral networks, automatically discover order parameters such
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as the material’s magnetization or other physically plausible
local quantities [5, 6, 9]. But for topological phases, the algo-
rithms fail [6, 7], require the explicit presence of edge states
[8], or rely on nongeneric details of the models under study
[6, 9]. Thus they can't clearly “see” the fingerprints of topo-
logical phases.

Zhang and Kim propose a “cure” to the topological near-
sightedness of machine-learning algorithms based on neural
networks. Dubbed quantum loop topography (QLT), the
cure involves constructing multidimensional images that
highlight topological information about the phases that is
otherwise invisible to the networks. The researchers tested
the procedure on a conventional insulator and two types of
Chern insulator—a system of electrons that hosts a quantum
Hall topological phase in the absence of a magnetic field.
They built the QLT images of the different insulating phases
using snapshots of the density of the phases obtained from
their electronic wave functions. The mathematics behind the
QLT images closely follows a special formula for the Hall
conductivity, which is the response function that character-
izes Chern insulators. For all phases, pixels in the QLT image
are based on several adjacent, triangular loops located at the
pixels of the phase’s density snapshots (Fig. 1). The authors
considered triangles of increasing size until enough nonlocal
information about a particular phase was encoded in its QLT
image. They then fed the QLT images into a standard neural
network that was trained to judge whether the different im-
ages corresponded to a topological phase or not. They found
that the procedure could successfully tell a Chern insulating
phase from a conventional one with high fidelity, regardless
of the microscopic details of the phases. What’s more, the
approach could identify quantum phase transitions between
the different phases.

The wave function of a many-electron system, which is
at the heart of the authors’ approach, is one of the most
complex mathematical objects in physics. It contains vast
amounts of information, so deriving and analyzing it is the
ultimate big-data challenge for physicists. It is thus reason-
able to expect that machine-learning techniques will help
to perform these and other related tasks. Zhang and Kim
capitalized on this idea and proposed a solution to identify
topological states.

Zhang and Kim’s QLT approach is a timely addition
to the expanding toolbox of machine-learning algorithms
for tackling problems in condensed-matter and statistical
physics. For one, the technological applications that topo-

logical phases may find, such as topological quantum com-
puting and spintronics, are becoming more visible. For
another, snapshots of many-body wave functions are be-
coming routinely available through the use of experimental
techniques such as quantum-gas microscopy [11] and quan-
tum annealing [12]. Thus, besides being an interesting
theoretical exercise, the authors” QLT strategy and other
related machine-learning tools may well become practical
tools for the identification and exploration of matter in all
its possible forms.

This research is published in Physical Review Letters.

REFERENCES

[11 Y. Zhang and E.-A. Kim, “Quantum Loop Topography for Ma-
chine Learning,” Phys. Rev. Lett. 118, 216401 (2017).

[2] X. Wen, Quantum Field Theory of Many-Body Systems: From
the Origin of Sound to an Origin of Light and Electrons, Oxford
Graduate Texts (Oxford University Press, Oxford, 2004).

[3] N. Goldman, J. C. Budich, and P. Zoller, “Topological Quantum
Matter with Ultracold Gases in Optical Lattices,” Nat. Phys. 12,
639 (2016).

[4] M. Levin and X.-G. Wen, “Detecting Topological Order in a
Ground State Wave Function,” Phys. Rev. Lett. 96, 110405
(2006).

[5] L. Wang, “Discovering Phase Transitions with Unsupervised
Learning,” Phys. Rev. B 94, 195105 (2016).

[6] J. Carrasquilla and R. G. Melko, “Machine Learning Phases of
Matter,” Nat. Phys. 13, 431 (2017).

[71 W. Hu, R. R. P. Singh, and R. T. Scalettar, “Discov-
ering Phases, Phase Transitions and Crossovers through
Unsupervised Machine Learning: A Critical Examination,”
arXiv:1704.00080.

[8] T. Ohtsukiand T. Ohtsuki, “Deep Learning the Quantum Phase
Transitions in Random Two-Dimensional Electron Systems,” J.
Phys. Soc. Jpn. 85, 123706 (2016).

[9] P. Ponte and R. G. Melko, “Kernel Methods for Interpretable
Machine Learning of Order Parameters,” arXiv:1704.05848.

[10] S. J. Wetzel, “Unsupervised Learning of Phase Transitions:
From Principal Component Analysis to Variational Autoen-
coders,” arXiv:1703.02435.

[11] W. S. Bakr, J. I. Gillen, A. Peng, S. Fdlling, and M. Greiner,
“A Quantum Gas Microscope for Detecting Single Atoms in a
Hubbard-Regime Optical Lattice,” Nature 462, 74 (2009).

[12] M. W. Johnson et al., “Quantum Annealing with Manufactured
Spins,” Nature 473, 194 (2011).

10.1103/Physics.10.56

physics.aps.org

© 2017 American Physical Society

22 May 2017 Physics 10, 56


https://journals.aps.org/prl
http://physics.aps.org/

	References

