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A Ranking Scheme for
Mass-Transport Predictions
A new theory provides a way to compare the accuracy of different mass-transport
calculations, which are widely used to evaluate the performance of materials.

by Danny Perez∗

U nderstanding and controlling the transport of
atoms and molecules is paramount to the design
of many modern devices. These include batter-
ies, where fast ion transport is beneficial, and

nanoscale semiconductor components for electronics, where
the transport of dopants must be limited. The current un-
derstanding of these transport processes is based on the
Nobel-prize-winning work of Lars Onsager [1, 2]. In a
pair of 1931 papers, he related the flux of an entity like
density, heat, or concentration to a corresponding driving
force like a difference in pressure, temperature, or chemi-
cal potential. The connection between flux and force, he
showed, was a tensor of transport coefficients that character-
izes how a system responds to a departure from equilibrium.
Unfortunately, while elegant, Onsager’s theory does not pro-

Figure 1: Trinkle’s variational expression for mass-transport
coefficients introduces a displacement field that ‘‘warps’’ the
positions of atoms in a solid. When the ‘‘optimal’’ form of this field
is plugged into the expression, the expression yields the correct
transport coefficients for the unwarped solid. (D. Trinkle/University
of Illinois at Urbana-Champaign; adapted by APS/Alan
Stonebraker)
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vide a practical recipe for computing the coefficient values.
So, instead, researchers approximate them using a slew of
theories and numerical schemes [3–5]. Comparing, assess-
ing, and improving upon these approximation methods has
been a challenge in materials science, but a new theory
proposed by Dallas Trinkle of the University of Illinois at
Urbana–Champaign provides a powerful conceptual frame-
work for accomplishing all three tasks [6].

The difficulty in obtaining reliable transport coefficients
lies in a mismatch of scales. Consider the case of mass trans-
port in a solid, which occurs because of gradients in the
chemical potentials of different species. Onsager expressed
his equations for mass transport at the mesoscale, assuming
concentrations and chemical potentials that vary smoothly
over a much longer length scale than the spacing between
atoms. But accurate transport models require a knowledge
of relevant microscopic “units,” and there is an extremely
large number of microscopic configurations that must be
considered. For instance, in a battery, the unit process that
contributes to transport is the hopping around of an ion, and
the rate of the hopping may depend strongly on the presence
of neighboring ions or defects. Brute-force computations
of the Onsager coefficients that are rooted in microscopic
processes can be highly accurate because they involve av-
erages over many configurations, but this averaging is also
extremely time consuming. In contrast, analytic techniques
can approximate the coefficients cheaply by, say, assuming
that some local configurations dominate the transport. But
the accuracy of these cheaper schemes can be difficult to as-
sess. The tension between cost and accuracy comes into play,
for example, when searching for battery materials in a large
database. One wants to be able to make a lot of fast pre-
dictions but not at the expense of missing a diamond in the
rough.

Trinkle provides a new approach to assessing different
methods of approximating mass-transport coefficients. He
considers a generic solid through which multiple atomic
species can diffuse. He then introduces a fictitious dis-
placement field that—if it existed—would warp the space
in which the diffusing atoms are embedded (Fig. 1). Next,
Trinkle obtains an expression for the Onsager coefficients
that depends on the virtual atom displacements (see note in
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Ref. [7]). His expression yields the correct transport coeffi-
cients for the unwarped solid when the displacement field
assumes one particular, or “optimal,” form. But with any
other form of the field, the expression produces larger coef-
ficient values. (This idea is akin to the variational principle
in quantum physics, which says that the energy of an arbi-
trary wave function is always greater than or equal to that
of the ground state wave function.) According to Trinkle’s
approach, finding the correct coefficients amounts to an op-
timization problem: one varies the form of the displacement
field until the coefficients are minimized.

Trinkle’s work leads to a new perspective: approximat-
ing the transport coefficients corresponds to putting “con-
straints” on the form of the displacement field. This idea has
several implications. First, an approximation method will
never predict transport coefficients that globally minimize
Trinkle’s variational expression if the method corresponds
to a set of fields that don’t include the optimal field. Second,
the larger the predicted coefficients compared to the coef-
ficients that minimize the variational expression, the more
approximate the predictions are. This fact gives a natural
way to assess and rank different methods, even when the
exact values of the coefficients are not known.

Such a ranking system will make it easier to assess
whether new, affordable computational approaches are ac-
curate. It also offers a way to systematically improve the
accuracy of computed coefficients without having to derive
new physical models—a process that has tended to be a bit of
a black art. How might this improvement work? One would
start with the set of constrained fields that corresponds to
some approximated coefficients. Then, one would gradually

relax the constraints to find an updated field that is closer
to being optimal. Finally, this improved field would be
plugged into the variational expression to determine more
accurate coefficients. This way of finding more accurate
coefficients might provide less physical intuition compared
with a traditional transport model, but it can be imple-
mented much more systematically.

This research is published in Physical Review Letters.
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