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Constructing a Theory for
Amorphous Solids
Theorists are coming closer to a comprehensive description of the mechanics of solids with
an amorphous structure, such as glass, cement, and compacted sand.

by Emanuela Del Gado∗

Amorphous solids are disordered assemblies of
atoms or larger particles that nonetheless have a
rigid structure. Examples include glass, cement,
compacted sand, and even yogurt or chocolate

mousse (Fig. 1). At first sight, these materials may appear
to have little in common. But amorphous solids share many
mechanical properties, and physicists have long been inter-
ested in finding a theory that predicts the materials’ behavior
in terms of their microstructure in a unified way. Unlike
crystalline solids, however, the rigidity of amorphous solids
is not associated with a thermodynamically stable, stress-
free microstructure, so researchers have had to turn to novel
theoretical approaches. A pair of papers from Eric DeGiuli of
École Normale Supérieure in Paris [1, 2] now marks progress
toward the goal of a unifying theory. Building on recent the-
ories for glasses and granular materials, DeGiuli presents a

Figure 1: Compacted sand (left), chocolate mousse (middle), and
concrete (right) are all types of amorphous solid—materials that
are mechanically rigid but have a disordered structure. DeGiuli [1,
2] has developed a new theory that explains how stresses are
correlated in these ubiquitous materials. (iStock.com/Vudhikul
Ocharoen/themacx/A_Lein)
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general field theory for amorphous solids and uses it to pre-
dict how they transmit stress.

Researchers are already equipped with equations that pre-
dict the mechanical response of a perfectly crystalline solid
from its atomic structure [3]. These equations can, for ex-
ample, describe how a piece of such a solid would deform
under a load. But it has proven much harder to find an anal-
ogous set of equations for amorphous solids. The biggest
barrier to developing such a theory is that, even in the ab-
sence of a load, an amorphous solid always has internal
stresses, which build up within the material as it solidifies
[4]. For example, when sand compacts, internal stresses de-
velop from friction between the grains and from constraints
imposed by the material’s outer boundary. Depending on
the material and how it’s deformed, these internal stresses
can lead to enhanced strength (think of the prestressed ma-
terials used for construction) or enhanced ductility [5, 6].
Measuring the distribution of internal stresses in experi-
ments is very difficult. And even if one could measure it, the
information would be incomplete: the stress distribution un-
der a load evolves in a complicated way because stresses in
different parts of the material are correlated. This correlation
needs to be understood in order to predict how a material
will deform when pushed.

An important theoretical breakthrough came in 2009 from
Silke Henkes and Bulbul Chakraborty [7]. The duo adapted
a nonequilibrium statistical mechanics approach that was
developed by Sam Edwards in the 1980s to describe granular
solids, a family of amorphous solids that includes com-
pacted sand [8]. Following on Edwards’ ideas, Henkes and
Chakraborty defined a sand pile’s macroscopic behavior in
terms of its stress distribution. They then used their formula-
tion to derive an equation for the stress correlation between
two regions of the material that are separated by a distance
r. The duo also sketched out a field theory to describe a 2D
granular solid. This theory expresses the material’s internal
stresses with a mathematical field, the Airy stress function,
whose properties are helpful for solving the equations that
determine stress correlation.

DeGiuli’s field theory [1, 2] builds on that of Henkes and
Chakraborty, formulating it so that it applies not just to gran-
ular solids but to amorphous solids in general. He also
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derives the form of stress correlations in both 2D and 3D.
Applied to a 2D material, the equations in his field the-
ory predict that stress correlations in an amorphous solid
are long-ranged, decaying as 1/r2—just as Henkes and
Chakraborty had shown for sand piles, and as another re-
searcher, Anaël Lemaître, also demonstrated in 2017 for
glasses [9]. In 3D, DeGiuli’s equations predict stress correla-
tions with a fall off of 1/r3. Recently, Lemaître demonstrated
the same result for glasses in 3D using a different approach
[10].

Long-range stress correlations, like those DeGiuli and oth-
ers have found in amorphous solids, are characteristic of
an elastic solid—a material that bounces back to its original
shape after being deformed. Such solids have tradition-
ally been described with elasticity theory, which imagines
that each small volume in a solid deforms elastically [11].
DeGiuli and the others [1, 2, 7, 9, 10], however, don’t make
this assumption. Instead, they predict the same type of
correlations by imposing two reasonable constraints on the
stress field. First, the structure of the material is isotropic.
Second, the net force and torque acting on each small vol-
ume in the material are zero (mechanical equilibrium).

The fact that these conditions are sufficient to lead to
elastic-like correlations in an amorphous solid that is not
necessarily elastic on small length scales is perhaps the most
important insight from the new theoretical developments.
For one, it provides a unifying explanation for why amor-
phous solids can, in many cases, resist deformation as do
crystalline solids, despite not having a thermodynamically
stable structure. Compacted sand is an interesting case in
point: Once the sand settles into mechanical equilibrium,
these theories argue that it will have solid-like properties
despite there being no local elastic interactions between
its grains—an effect that’s seen in experiments. The same
unifying principle could explain why so-called elastoplas-
tic theories that include elasticity work extremely well for
many types of amorphous materials [6]. And it is consistent
with the observation that materials as diverse as glasses, ce-
ments, and granular matter all exhibit similar phenomena,
such as avalanching, where a deformation in one point in the
material triggers a chain of others, and strain localization,
where the deformation resulting from pushing on a material
doesn’t spread out uniformly.

Field theories are powerful tools in condensed-matter and
high-energy physics. And, in principle, the theory devel-
oped by DeGiuli could be used to do much more than
predict stress correlations: It might, for example, be used
to describe the response of amorphous solids to large defor-

mations or to changing environmental conditions. But these
additional calculations may be difficult because the theory
is complex. Moreover, a field theory is a continuum the-
ory—meaning it only applies at a length scale greater than
the separation between the particles. Identifying this length
scale and determining if DeGiuli’s theory is truly distinct
from existing continuum theories are important next steps.
Resolving these issues will give researchers a better sense
of whether they have found the right theory to connect the
mechanics of amorphous solids with their microscopic com-
plexity.

This research is published in Physical Review Letters and
Physical Review E.
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