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Fast-Forwarding the Search for New
Particles
A proposed machine-learning approach could speed up the analysis that underlies searches
for new particles in high-energy collisions.

by Daniel Whiteson∗

I n the eyes of an old and famous statistics paper [1],
searching for evidence of a new particle in the com-
plex data of the Large Hadron Collider should be easy.
You just need to calculate two numbers: the likelihood

that the data came from the hypothetical particle and the
likelihood that it did not. If the ratio between these num-
bers is high enough, you’ve made a discovery. Can it really
be that easy? In principle, yes, but in practice, the two
likelihood calculations are intractable. So instead, particle
physicists approximate the likelihood ratio by making sim-
plifying assumptions. Even then, the calculation requires
a huge amount of computer time. In a pair of papers [2],
Johann Brehmer of New York University and colleagues pro-
pose a new approach that avoids the typical simplifications
and doesn’t demand long computation times. Their method,

Figure 1: Brehmer and colleagues outline a machine-learning
approach that could help particle physicists analyze collision data
faster in the search for new particles. Their method relies on using
simulations of a particle collision (left) to train a neural network
(center), allowing for faster measurement of the properties (right)
of new particles in effective field theories. (J. Brehmer et al. ;
adapted by APS/Alan Stonebraker)
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which relies on machine-learning tools, could significantly
boost physicists’ power to discover new particles in their
data.

Physicists almost never directly “see” the particle that
they are searching for. That’s because new particles created
in a collision exist for only a brief shining moment (< 10−20

s) before decaying into other particles. These secondary par-
ticles may lead to hundreds of other particles, which are
what’s actually picked up in the detectors. When making a
likelihood calculation, researchers have to account for all of
the different types of secondary particles with different mo-
menta that could have led to the same detected outcome—a
bit like sipping a glass of wine and trying to imagine all of
the ways the Sun and weather could have influenced its fla-
vor. Accounting for all of the possible secondary particles
and their momenta involves a hairy integral that sums over
all of the possibilities. Unfortunately, calculating the integral
exactly is impossible, and numerical approaches fail because
of the vast parameter space of the unobserved particles.

Obviously, particle physicists have not thrown their hands
in the air and given up. They’ve managed to extract ev-
idence from the collider data for all of the particles that
make up the standard model, including the Higgs boson.
The key to this success has been simplifying the relevant
likelihood-ratio calculation into one that is still computation-
ally expensive, but doable—albeit with less statistical power
to make a detection. The most widespread approach has
been to randomly select a few of the possibilities for the un-
observed secondary particles and momenta and then to use
these possibilities to simulate detector data with or with-
out a new particle [3]. These simulations still take up a
lot of computer time. And, most importantly, they cannot
describe the expected data in terms of all of the relevant pa-
rameters, which is where the discovery power is lost. An
alternative approach attempts to tackle the integration di-
rectly [4], making it tractable via a series of assumptions
about the secondary states, such as whether the particles in-
volved can be treated independently. This direct approach
also requires significant computational resources, and the as-
sumptions are viewed as unpalatable.

In their two papers, Brehmer and co-workers outline
a new strategy for calculating the likelihood ratio within
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effective field theories, which are often used for making pre-
dictions beyond the standard model. They first point out
that even though the likelihood ratio’s numerator and de-
nominator are intractable, the difficult bits in both cancel
out in an “extended” version of the final ratio. In this ex-
pression, some momenta of the unobserved particles are
assumed to be constant. The extended ratio can be calcu-
lated using a small number of integrals, and the original
likelihood ratio can then be recovered from the extended
version using machine learning (Fig. 1). In a nutshell, a neu-
ral network is provided with many simulated examples of
the few unobserved momenta so that it learns how to ap-
proximate the intractable likelihood ratio—much as though
it had learned how to do the integral! The researchers have,
in a sense, combined the best of the simulation and direct ap-
proaches. At the same time, they avoid the pitfalls of existing
approaches: the trained neural network evaluates the likeli-
hood ratio quickly (within microseconds), without using the
simplifying assumptions of the direct calculation approach.

Can particle physicists now jump for joy, knowing future
searches will be a lot easier? Not quite, as the proposed
approach comes with some costs. It will require the gen-
eration of many simulated examples in order for the neural
network to learn the relationship between the unobserved
and observed data. In addition, the approach uses com-
plex machine-learning algorithms, which can be difficult to
train and understand. To what extent it will actually be
faster is hard to predict at this point. But in my view, this
is a landmark new idea, which brings the power of modern
machine-learning to bear on a central, intractable statistical

problem in particle physics. It suggests that we can extract
more information out of our collisions and at a reduced com-
putational cost. The possibility of more discoveries, in less
time and for less money, is definitely good news.

This research is published in Physical Review Letters and
Physical Review D.
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