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Circuit Simulates One-Dimensional
Quantum System
An electrical circuit simulates a quantum phase transition induced by the presence of an
impurity in a one-dimensional conductor.

by Emanuele Dalla Torre∗ and Eran Sela†

A ccording to the laws of classical physics, atoms
should stand perfectly still at absolute zero. How-
ever, this classical prediction violates the Heisen-
berg uncertainty principle, which says particles al-

ways fluctuate, even at zero temperature. Such fluctuations
can drive a transition between two quantum phases at zero
temperature, much like thermal fluctuations drive a phase
transition at finite temperatures. While quantum phase tran-
sitions have been observed in a handful of condensed-matter
systems, it remains challenging to test them in experiments.

Figure 1: Three physical systems can exhibit the same
insulator-to-metal quantum phase transition thought to occur in a
1D system of quantum particles, known as a Tomonaga-Luttinger
liquid (TLL). The systems are: Two superconductors separated by
a thin resistive layer (top left) [2]; a 1D array of electrons in the
presence of an impurity (top right) [6]; and a micrometer-sized
electronic device made of nanochannels connected to a central
quantum dot (bottom) [1]. Pierre and colleagues have used the
latter as a quantum simulator, which allows them to investigate
features of the TLL phase transition that can’t be studied in the
other two systems. (APS/Alan Stonebraker)
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Frédéric Pierre at the University of Paris Sud and collab-
orators have now demonstrated an electronic circuit that
can simulate a quantum phase transition that is expected
to occur in a one-dimensional (1D) quantum liquid, such
as electrons in a long, thin wire [1]. In such a liquid, the
presence of an impurity can trigger the transition of the oth-
erwise conducting wire to an insulating state. By simulating
this insulator-to-metal transition, with unprecedented con-
trol over the parameters governing the transition, the team
was able to test previously inaccessible aspects of a funda-
mental theory for 1D quantum systems. The approach may
pave the way to simulating other quantum phase transitions
using electronic devices.

The quantum phase transition observed by Pierre and col-
laborators traces back to a 1982 theoretical prediction by
physicists Sudip Chakravarty [2] and Albert Schmid [3],
who studied a structure made of a metal sandwiched be-
tween two superconductors, known as a resistively shunted
Josephson junction [Fig. 1(top left)]. Does this device behave
as a superconductor or as a metal? Chakravarty and Schmid
solved this problem by recasting it in terms of a known prob-
lem of statistical mechanics: the behavior of a gas of charged
particles in one dimension, or a “Coulomb gas” [4].

Chakravarty and Schmid found that the behavior of the
junction depends only on the physical properties of the
metal, specifically on its resistance. In quantum mechan-
ics, the resistance is often measured in terms of a resistance
quantum, defined as h/(2e)2, or 6.5 kΩ, where e is the charge
of an electron and h is Plank’s constant. Their calculations
showed that if the resistance of the metal is larger than
6.5 kΩ, the junction behaves as a regular metal, but if it is
smaller, the junction behaves as a superconductor. Their the-
ory predicted that a quantum phase transition between these
two states occurs exactly at 6.5 kΩ. The resistance value
controls the phase transition because resistors have two ef-
fects: they dissipate the electrons’ energy, and in doing so,
they add quantum fluctuations to the system. According
to statistical mechanics, these two effects are connected by
the fluctuation-dissipation relation, and they exactly balance
each other. Hence, by controlling the resistance of the metal,
one can “tame” quantum fluctuations and thereby control
the quantum phase transition between the metallic and su-
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perconducting states [5].
Chakravarty and Schmid’s results can be extended to a

broader class of physical systems. In 1992, Charles Kane and
Matthew Fisher used the same equations to describe a quan-
tum impurity embedded in a 1D wire of particles [Fig. 1(top
right)] [6]. Such a 1D system, in which particles cannot
avoid each other, is often described as a Tomonaga-Luttinger
liquid (TLL)—a unique phase of matter that is thought to
describe, for instance, electrons in carbon nanotubes or elec-
trons moving along the edges of a quantum Hall material.
Other 1D systems, such as a spin chain with a weak link [7],
were found to be described by the same equations.

Kane and Fisher predicted the possibility of a quantum
phase transition between a metallic state, unaffected by the
impurity, and an insulating state in which the impurity splits
the wire into two disconnected parts. The phase transition is
controlled by the so-called Luttinger interaction parameter
K, which quantifies the strength of the interaction between
the particles in the wire and effectively controls the fate of
the system when the impurity is introduced. Up to now,
however, these theoretical predictions could not be tested in
experiments. The key challenge is posed by the fact that the
value of K is hard to control experimentally.

Pierre and colleagues have devised a platform in which
the same type of quantum phase transition can be exper-
imentally observed [Fig. 1(bottom)]. Their system is a
micrometer-sized device made of a series of 1D channels in
which electrons can move only in one direction. To create
these channels, the researchers use the edge states of a semi-
conductor heterostructure in a quantum Hall regime. The
channels are connected to a central microscopic island—a
quantum dot—that can be occupied by a known number
of electrons. The junctions between each of the channels
and the island act as “quantum point contacts”—narrow
constrictions whose sizes are comparable to the wavelength
of the conducting electrons. The researchers can then con-
trol the number of channels coupled to the quantum dot by
opening or closing these quantum point contacts through an
applied voltage.

As shown by a previous theoretical study [8], the authors’
device is equivalent to an infinitely long 1D wire of electrons
interacting with an impurity. The island blocks the trans-
mission of electrons from one channel to other channels,
mimicking an impurity that blocks the flow of electrons in a
1D wire. The team varied the Luttinger interaction strength
K by controlling the number of open channels coupled to the
dot. By coupling one, two, three, or four channels to the dot,
they could tune K to four different values (1/2, 2/3, 3/4, and
4/5). This unprecedented tunability is what distinguishes
this experiment from previous studies that employed simi-
lar circuit analogs but couldn’t tune the value of K [9].

Using this setup, the team carried out experiments that
confirmed previous predictions for a specific value of the
interaction strength, K = 1/2 [10], and also confirmed

calculations performed within the present paper for an ad-
ditional value of K = 2/3. For such values, the experiments
showed evidence of an insulator-to-metal phase transition.
The features of this transition, such as the scaling behav-
ior of the device conductance as a function of temperature,
accurately reproduced the theoretical expectations. Impor-
tantly, good agreement between theory and experiment was
also found for out-of-equilibrium conditions, in which the
system was perturbed by a large voltage applied to the is-
land. Nonequilibrium states are generally harder and, in
some cases, impossible to analyze theoretically. Remark-
ably, the experiments could also access regimes for which
no explicit theoretical solutions are yet available: interaction
strengths of K = 3/4 and 4/5, both for equilibrium and out-
of-equilibrium conditions.

The scheme developed by Pierre and his collabora-
tors can be regarded as a quantum simulator [11]. The
idea—envisioned by Feynman nearly four decades ago—is
to use a measurable quantum system to mimic another
quantum system that is governed by the same equations
but is theoretically intractable. Thanks to the mathemat-
ical equivalence between Josephson junctions, Tomonaga-
Luttinger liquids, and this quantum-dot circuit, each of these
systems can be used as a quantum simulator of the other
two (Fig. 1). As the experiments of Pierre and co-workers
demonstrate, this approach can help us solve quantum prob-
lems that no theory or supercomputer could settle.

This research is published in Physical Review X.
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