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VIEWPOINT

Non-Hermitian Topological Systems

A theoretical framework tries to sort out where topological phases may arise in
non-Hermitian systems—which are systems with gain and loss.

by Miguel A. Bandres* and Mordechai Segevt

wo emerging fields—non-Hermitian systems and

topological phases—have recently begun to merge

together, but just how much they overlap remains an

open question. On one side, “non-Hermitian” typ-
ically applies to systems that experience gain and loss. On
the other side, a “topological phase” is a state of matter that
is characterized by a property that remains invariant dur-
ing continuous deformations of the system. At first blush,
it is not at all obvious that a topological invariant could
arise within a non-Hermitian (NH) system, which can be
out of equilibrium and even unstable. Experiments have
given evidence for topological phases in 1D and 2D NH
systems, but researchers have yet to place these results in
a broader context that might reveal other NH topological
systems. Zongping Gong from the University of Tokyo and
colleagues present a new general framework for classifying

Figure 1: A non-Hermitian system is represented here in two
dimensions with different regions experiencing gain (red) and loss
(blue). New theoretical work addresses conditions under which the
system supports topological phases. Such a phase can allow edge
states (shown as a yellow arrow) that move in one direction
around the material and are immune to defects and disorder.
(APS/Alan Stonebraker)
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topological phases of non-Hermitian systems [1]. They cre-
ate a “periodic table” of NH topological phases based on
the symmetries of the system and the number of dimen-
sions. Under their classification, 2D non-Hermitian systems
should not have topological phases, which would seem to
conflict with recent experimental and theoretical work [2,
3]. However, the apparent discrepancy is a result of differ-
ent definitions for what constitutes a NH topological phase,
which means the book on non-Hermitian topological sys-
tems isn’t yet closed.

In quantum mechanics, an operator—a mathematical
function that acts on a wave function—is typically assumed
to be Hermitian, which means it returns only real values.
These values are called observables, as they are the potential
outcomes of measurements. By contrast, a non-Hermitian
operator can allow imaginary (or complex) values. NH op-
erators have proved useful in describing loss mechanisms,
open systems, finite lifetime, and dephasing—all phenom-
ena that would otherwise have to be described by coupling
to degrees of freedom outside the system of interest. While
the NH version of quantum mechanics is helpful in simplify-
ing calculations and for identifying resonances, the assump-
tion has long been that NH operators are not physically
meaningful, as one can’t have complex valued observables.
Twenty years ago, this assumption was shown to be wrong,
when researchers found that the observables of certain NH
operators that obey parity-time (PT) symmetry are real [4]. It
took another decade for these concepts to be introduced into
optics [5], and shortly thereafter PT optics produced the first
experimental realizations of NH PT-symmetric systems [6],
earning it recognition as one of the top physics discoveries
in recent years [7].

In parallel to PT optics, another major research effort has
taken off recently: topological photonics. This field started
off as a way to emulate condensed-matter topological insula-
tors, which are insulators in their bulk but conduct electricity
on their surfaces in a way that is unidirectional and robust
against disorder. Following early work with microwaves
[8], the first optical-frequency topological insulators were
demonstrated in 2013 [9]. In these systems, light travels
along the surface in one direction and with immunity to
defects and disorder (Fig. 1). This “topologically protected
transport of light” could help researchers build nanoscale
optical isolators and make the transport of quantum infor-
mation more robust.
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Right from the very beginning, researchers realized
that topological photonics could do more than emulate
condensed-matter phenomena. Unlike condensed-matter
systems, photonic systems can be highly nonlinear, and
their dynamics can be far away from thermal equilibrium.
Photonic systems also open up possibilities of combining
topology with NH physics by making use of gain (stimu-
lated emission) and loss, which are common to any laser. In
2015, the first NH topological system was demonstrated in
an experiment with a 1D lattice of coupled optical waveg-
uides engineered with loss [10]. But the experiments were
thought to be specific to a particular system, and several
theory papers questioned whether NH systems were com-
patible with topological invariants.

Some of the controversy was resolved by subsequent PT-
optics experiments that demonstrated 1D topological phases
[11]. But light cannot propagate along the edge of a 1D sys-
tem (since it’s just a single point), so the question remained
open as to whether NH topological systems could exhibit
topologically protected transport. The issue came up again
earlier this year, when we and our colleagues demonstrated
experimentally and theoretically a 2D topological insulator
laser [2], which exploits topological immunity to defects
and disorder to enhance the lasing efficiency and maintain
single-mode lasing even high above the lasing threshold.
The topological laser can be described by a non-Hermitian
model derived by introducing gain, loss, and nonlinearity
into the Haldane model, which is the archetypical model for
topological phases [2]. While this work shows that a 2D
NH system can exhibit topologically immune transport, it
remains unclear how to extrapolate this result to other sys-
tems. For this reason, Gong et al. [1], as well as other groups
[3, 12], have aimed to create a theoretical basis for topologi-
cal phases in NH systems.

Gong et al. developed a general methodology that classi-
fies a NH topological system by examining how it can be
mapped from one system to another by smoothly chang-
ing its parameters. If such a mapping requires the energy
bands in the calculated spectrum to cross a “base energy”
point, then the system is said to have a topological phase,
characterized by a topological invariant. By contrast, if the
mapping can occur without any crossing, then the system
is defined to be topologically trivial. Based on these crite-
ria, Gong et al. constructed a periodic table, which lists NH
systems based on the number of dimensions and what sym-
metries are present (chiral, particle-hole, etc.). This table,
which borrows from a similar classification for topological
materials in Hermitian systems, identifies where topological
phases should be found, according to the definition Gong et
al. proposed.

The most profound conclusion from Gong et al. is that
2D NH systems do not have topological phases. How does
one reconcile this with the topological insulator laser [2], as
well as with recent derivations of topological invariants of

2D NH systems [3]? The answer lies in the criterion for
classification. Gong et al. apply a very strict definition of
topological invariant, which is separate from topologically
protected transport. In other words, a system that exhibits
topologically protected transport may be classified in Gong
et al.’s framework as not having a topological phase.

Gong et al.’s classification scheme offers a deep perspec-
tive on NH topological systems that may guide future work.
But at the end of the day, the interest in topological phases
stems from their robust transport properties, which offer fas-
cinating possibilities for quantum computing, optical-fiber
networks, and much more. The marriage of topology and
NH physics is already opening up exciting new applications,
and revealing the underlying principles of NH topological
physics could greatly enrich the development of the field.
The step taken here by Gong et al. undoubtedly marks im-
portant progress, but their way of classification does not yet
answer the question of what physical mechanisms underlie
topologically protected transport. This fundamental ques-
tion has been addressed for some specific cases [3, 12], but
the jury is still out on how to formulate a more general an-
swer.

This research is published in Physical Review X.
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