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Surfing on a Wave of Quantum Chaos
A model based on Brownian motion describes the tsunami-like propagation of chaotic
behavior in a system of quantum particles.

by Xiaoliang Qi∗

I n daily life, “chaos” describes anything messy. In
physics, the term has a more specific meaning: It refers
to systems that, while subject to deterministic laws, are
totally unpredictable because of an exponential sensi-

tivity to initial conditions—think of the butterfly flapping
its wings and causing a distant tornado. But how does the
chaos observed in the classical, macroscopic world emerge
from the quantum-mechanical laws that govern the micro-
scopic world? A recently proposed explanation invokes
quantum “information scrambling” [1, 3], in which informa-
tion gets rapidly dispersed into quantum correlations among
the particles of a system. This scrambling is a memory-
loss mechanism that can cause the unpredictability of chaos.
Developing a theory that fully describes information scram-
bling remains, however, a daunting task. Now, Shenglong
Xu and Brian Swingle of the University of Maryland, College
Park, have taken a step toward this description by studying
chaos with models based on a quantum version of Brow-
nian motion [4]. Such models characterize chaos in terms
of quantum-mechanical operators that grow more complex

Figure 1: Sketch of the ‘‘operator scrambling’’ concept. In a
chaotic system, an operator that flips a single qubit at time 0
evolves in time into a more complex operator that flips more
qubits. (X. Qi; adapted by APS/Alan Stonebraker)
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over time. Xu and Swingle show that this formalism enables
a quantitative description of how chaos spreads in a many-
body system.

In classical physics, a familiar example of chaos is the
three-body problem: When two planets orbit a star, the mo-
tion of the system is extremely sensitive to the bodies’ initial
positions and momenta. The future positions and momenta
are deterministically related to the initial conditions, but this
connection grows more mathematically complex with time.

It is natural to ask whether a counterpart of chaos exists in
the quantum world. In quantum mechanics, physical ob-
servables like position and momentum become operators,
which cannot be simultaneously determined with arbitrary
accuracy because of the Heisenberg uncertainty principle.
However, the dynamics remain deterministic, since opera-
tors at a later time are determined by the initial operators.
Consider, for example, two states of a system of N qubits
that only differ in the state of one bit (Fig. 1). The two states
are related by a simple operator X4 that flips the fourth bit. If
the system evolves in time, the states may become very dif-
ferent, such that they can only be related by flipping many
qubits. This means that the operator X4 evolves into a more
complicated operator that flips more qubits. Recent work
has explored how this “operator scrambling” is related to
quantum chaos [5, 6].

Such studies have hinted at some characteristic features of
quantum chaos. In a system of qubits, such as an ensem-
ble of electron spins in a crystal, flipping a single qubit (or
a few qubits) in a chaotic system is like triggering a local-
ized earthquake in the middle of the ocean. Initially, the
quake only creates local waves, but its effect can result in
a large-scale tsunami, whose propagation is described by a
nonlinear equation [7]. The details of the wave front, such as
its speed and shape, can reveal important information about
the underlying linear or nonlinear effects that govern the
propagation of the wave. Similar behavior is expected in the
dynamics of quantum operators (Fig. 2). Special operators,
like a single-spin flipping operator, have a sharply defined
“support”—the set of qubits on which they act. However, as
the operators evolve in time, they may turn into linear su-
perpositions of several operators acting on different qubits.
Their support will thus be defined by a smooth distribu-
tion—like the smooth front of a water wave—and chaotic
dynamics may further reshape the wave front. A major goal
of Xu and Swingle’s work is to provide a quantitative de-

physics.aps.org c© 2019 American Physical Society 16 September 2019 Physics 12, 101

http://alanstonebraker.com
http://physics.aps.org/


Figure 2: A single-flip operator evolves into a continuous
superposition of different operators that has a smooth wave front.
(X. Qi; adapted by APS/Alan Stonebraker)

scription of such dynamics.
Studying operator scrambling is a difficult task, because

chaotic systems are hard to tackle analytically and numer-
ically. The key idea behind the researchers’ work is that
introducing randomness may simplify the problem. The
advantages of such an approach are known from thermo-
dynamics: While it is impossible to describe the exact state
of gas molecules in a room, one can predict the relation be-
tween the gas pressure and temperature with high accuracy
by assuming a random distribution of the particles’ states.
Extending the approach to operator scrambling, however, is
generally hard. Even determining how much the size of an
operator changes after a short time can be difficult, because
information from the past can have a complex effect on the
future.

To overcome these difficulties, Xu and Swingle turn to so-
called Brownian coupled cluster (BCC) models. These mod-
els are based on a quantum version of the Brownian-motion

models describing the erratic movement of molecules in a
fluid. In BCC models, the Hamiltonian governing the sys-
tem’s dynamics is not constant but is drawn randomly from
an ensemble of suitable Hamiltonians at each time instant
[8]. Loosely speaking, this is like shuffling cards after each
round in a card game. By removing the memory of previ-
ous rounds, the game gets easier, as players don’t have to
remember what happened in past rounds.. The researchers
adapt BCC models to provide a description of chaotic infor-
mation scrambling. In their mathematical derivation, this
memory erasure simplifies the dynamics of the system, such
that the spreading of chaos can then be characterized by a
single differential equation.

Xu and Swingle focus on a family of Hamiltonians that
describe spins with random, local coupling between them.
Using this family, they analyze systems of quantum particles
with N degrees of freedom and compare the results for large
N (N � 1) and small N (N = 2 corresponds to a conven-
tional qubit). Starting with infinitely large N—to simplify
the analysis—they determine that the wave front moves as a
solitary wave without changing shape. This infinite-N limit
is unstable, however, and for any finite N, they find a wave
front that becomes smoother and smoother as time goes on.
With further approximations, they tackle the case of small
N, which is analytically harder, finding similar wave propa-
gation and dissipation features.

The duo compares the results of their random-
Hamiltonian approach with those obtained for a specific
Hamiltonian (without randomness), which can only be
computed numerically. The comparison shows qualitative
agreement between the two cases, supporting the validity
of the BCC approach. It is important to note, however, that
there is a fundamental difference between Brownian models
and Hamiltonian models without randomness: in the latter,
the energy of the system is not conserved. As the authors
suggest, future work may look into developing frameworks
that could quantitatively describe quantum chaos while
respecting energy conservation.

There are many reasons why a more quantitative and sys-
tematic understanding of quantum chaos will be important.
One of them is related to an important line of fundamen-
tal research. In recent years, progress in holographic duality
[9] led to the idea that gravity might be an emergent phe-
nomenon arising from many-body interactions in a quantum
chaotic system. Theorists showed, for instance, that an object
falling into a black hole causes a perturbation to the event
horizon that’s similar to the propagation of a chaotic wave
front [3, 10]. By helping us model quantum chaos, the new
operator scrambling approach may contribute to unlocking
the mystery of quantum gravity.

This research is published in Physical Review X.
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