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Pushing Tensor Networks to the Limit
An extension of tensor networks—mathematical tools that simplify the study of complex
quantum systems—could allow their application to a broad range of quantum field theory
problems.

by Anastasiia A. Pervishko∗ and Jacob Biamonte†

N ot long after the birth of quantum mechanics,
Paul Dirac and others postulated that, in princi-
ple, quantum mechanics could predict any de-
sired property of matter [1]. That is, provided

one can solve the relevant quantum equations. Often, how-
ever, these equations are fiendishly difficult or impossible
to solve, as is the case, for instance, for strongly correlated
electron systems and other systems in which many-body
interactions play an important role. Solving such many-
body problems could help us find new high-temperature
superconductors, design quantum computing architectures,
or describe exotic phase transitions. So-called tensor net-
works, mathematical tools introduced decades ago, have
been widely successful in simplifying the treatment of com-
plex quantum systems. So far, however, these tools could
only tackle quantum systems in spatial dimensions higher
than 1 by discretizing them—representing them in the form

Figure 1: Tilloy and Cirac have extended the application of tensor
networks from a 2D lattice case (left) to a continuous case (right)
by replacing a sum over discrete indices with a functional integral.
(APS/Alan Stonebraker)
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of a discrete lattice. Such a representation can be inadequate
for numerous many-body problems. Now, Antoine Tilloy
and Ignacio Cirac at the Max Planck Institute for Quantum
Optics in Germany have extended tensor networks so that
they can represent continuous systems in any spatial di-
mension (including 2D and 3D) [2]. This result may allow
researchers to apply tensor networks to a wide class of prob-
lems in quantum field theory.

It has long been argued that the equations of quantum me-
chanics require computational resources far exceeding the
capacity of any classical computer. This is due to the “curse
of dimensionality”: the number of parameters required to
simulate a quantum system using a classical computer ap-
pears to scale exponentially with the number of particles
that the system contains. As Feynman famously argued,
quantum systems themselves could become computational
resources: A quantum computer could simulate a quantum
system without experiencing the exponential slowdown that
a classical computer would. Alas, building a quantum com-
puter that can solve a problem faster than a classical one
remains a challenge. But there may be other ways to cir-
cumvent the exponential scaling problem by simplifying the
quantum problem. A promising approach is offered by
tensor networks—elegant mathematical methods that have
already solved many important model quantum systems.

Tensor networks provide a simplifying description of a
quantum system by representing its wave function through
a network of interconnected building blocks called elemen-
tary tensors [3–6]. Each tensor is represented by a shape (a
square, oval, or triangle) linked by wires. As established by
extensive research, these networks provide highly accurate
encodings of the relevant quantum properties, including
quantum entanglement. Importantly, tensor networks come
with a diagrammatic language—much like the renowned
Feynman diagrams—which can guide their use through vi-
sual intuition.

The computational advantage stems from the fact that
the network approximates a complicated quantum state
with a simpler structure. In essence, tensor networks can
be thought of as a sort of data compression protocol that
preserves only those properties of the quantum state that
are sufficient to describe its behavior. This compression
can dramatically reduce the growth of computational com-
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plexity with the scale of the system. Exploiting this ad-
vantage, researchers have developed powerful numerical
methods based on tensor networks, such as matrix prod-
uct states—which describe strongly correlated systems in
1D—and projected entangled-pair states [7] and the multi-
scale entanglement renormalization ansatz [8]—which are
widely used in 2D.

To apply the above-mentioned methods, the quantum sys-
tem has to be rewritten in the form of a discrete lattice
of elementary tensors. This is an ideal representation for
systems made of arrangements of localized spins, like the
1D and 2D spin lattices of the Ising models used to de-
scribe magnetic interactions. For other quantum systems,
this imposes a possibly unwanted lattice symmetry and can
lead to errors. A challenge is thus to generalize tensor
networks to the continuum case. Headway was made in
2010 when Frank Verstraete and Cirac extended 1D matrix
product states to the continuum limit by letting the lattice
spacing tend towards zero while rescaling the tensors [9].
The duo showed that the extended formalism can be gener-
ally applied to quantum field theories, showing that it can
determine the ground states of systems in 1D.

Tilloy and Cirac now further generalize continuum ten-
sor networks to dimensions larger than one. Considering
bosonic quantum fields in 2D or 3D, they show that a class of
continuous tensor network states can be obtained as the limit
of the discrete tensor network representations (Fig. 1). Such
states have two equivalent representations, as a functional
integral or as an operator. The authors prove that these states
can be used as an “ansatz,” from which one can compute,
through a variational approach, expressions for both the n-
particle wave function and the correlation functions.

Importantly, they show that the continuous extensions
of tensor networks maintain some of the properties that
make discrete tensor networks such useful numerical and
analytical tools. Specifically, they have the same “ex-
pressiveness”—the ability to approximate any state of the
system—and satisfy the same invariance under gauge trans-
formations that don’t alter the state of the system.

Further work will need to address a number of open ques-
tions. For example, the authors show that the correlation
function of the system can be exactly derived only for con-

tinuous tensor network states that can be represented in a
Gaussian basis. This is a limited class of states, for which
analytical solutions are already known. The approach will
have to be generalized to the non-Gaussian case. It will
also be interesting to understand if continuous tensor net-
work states obey, similarly to their discrete counterparts, the
so-called area law—a fundamental scaling law for the entan-
glement of a system.

The jury is still out on whether this new continuum exten-
sion of tensor network states will lead to new physics. But
there is certainly hope that it will provide a range of analytic
techniques suitable for tackling continuous systems (such as
exact Gaussian functional integrals, saddle-point approxi-
mations, or diagrammatic expansions). And the theorists’
approach lays a promising foundation for further studies
of quantum field theories using tensor-network-based tech-
niques.

This research is published in Physical Review X.
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