
VIEWPOINT

Polarons Get the Full Treatment
A new way to model polarons combines the intuition of modeling with the realism of
simulations, allowing these quasiparticles to be studied in a broader range of materials.

by Chris G. Van de Walle∗

I n 1933, theoretical physicist Lev Landau wrote a
500-word article discussing how an electron traveling
through a solid might end up trapped by a distortion of
the surrounding lattice [1]. Those few lines marked the

beginning of the study of what we now call polarons, some
of the most celebrated “quasiparticles” in condensed-matter
physics—essential to understanding devices such as organic
light-emitting-diode (OLED) displays or the touchscreens of
smart devices. Until now, researchers have relied on two
approaches to describe these complex quasiparticles: ide-
alized mathematical models and numerical methods based
on density-functional theory (DFT). On their own, each ap-
proach has limitations, but Weng Hong Sio and colleagues
from the University of Oxford, UK, combined elements of
the two approaches into one formalism that could dramat-
ically boost our ability to model polarons of different types
and in different materials. The new method allowed them
to derive an unprecedentedly detailed picture of polarons in
an ionic crystal and in an oxide used for energy storage ap-
plications [2, 3].

Figure 1: Atomic-scale sketch of a polaron in the salt lithium
fluoride (LiF), as derived with the new model proposed by Sio et al.
[2]. (Chris G. Van de Walle; adapted by APS/Alan Stonebraker)
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When an electron travels through a solid, its negative
charge exerts an attractive force on the surrounding posi-
tively charged atomic nuclei. In response, the nuclei move
away from their equilibrium positions, trying to reach for
the electron. The resulting distortion of the crystalline lat-
tice creates a lump of positive charge that tags along with
the moving electron. This combination of the electron and
the lattice distortion—which can be seen as an elementary
particle moving through the solid—is a polaron [4, 5]. In
the language of condensed-matter physics, the polaron is a
quasiparticle formed by “dressing” an electron with a cloud
of phonons, the quantized vibrations of the crystal lattice.
Polarons may be large or small—depending on how the size
of the lattice distortion they carry compares to the lattice con-
stant—and tend to be effectively heavier than electrons, that
is, harder to push around using electric fields.

Our current understanding of polarons has been shaped
by idealized mathematical models, such as the one de-
veloped by Herbert Fröhlich in 1950 [6]. His model was
introduced to study electrons moving in ionic crystals such
as alkali halides. Since these crystals are polar, the atomic
vibrations associated with certain optical phonons generate
strong oscillating electric fields that can affect the electron’s
movement. The Fröhlich model accounts for this effect by
considering one electron whose wave function spreads over
many ions. The electron moves within a parabolic con-
duction band while coupling to optical phonons. Despite
the apparent simplicity of this model, its solution troubled
theorists—even Richard Feynman—for more than half a cen-
tury [7–9]. While these theorists’ contributions represent
great feats of condensed-matter theory, Fröhlich’s model and
others like it cannot account for many features of real ma-
terials—complex band structures, unit cells, and phonon
dispersion curves. And they can’t tackle difficult systems
like interfaces, surfaces, or low-dimensional materials.

In the past decade, researchers have explored an alter-
native approach—first-principles numerical calculations of
polarons based on DFT [10]. The idea is to add one electron
to a large subset of the crystal (a “supercell”) and find the
minimum-energy state of the entire system using optimiza-
tion algorithms. This strategy is useful for investigating real
materials, since the supercell can be described with atomistic
detail. However, there are limitations. In particular, since
the computational cost of DFT scales with the third power
of the number of atoms, only very small polarons can be
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studied. For example, the electron polaron in a simple salt
like lithium fluoride (LiF) is less than a nanometer in size,
but its description requires a supercell containing more than
5000 atoms. This is already at the limit of current computa-
tional capabilities; investigating larger polarons is out of the
question. Another practical difficulty is related to the fact
that DFT, being a mean-field theory, produces an unphysi-
cal effect on the polaron: It experiences a spurious Coulomb
repulsion from its own electronic charge. In some cases,
this self-interaction is sufficiently strong to destabilize the
polaron, leading to incorrect predictions. Lastly, since DFT
relies on the adiabatic Born-Oppenheimer approximation, it
is challenging to upgrade the theory so that it accounts for
quantum fluctuations of the atomic nuclei or nonadiabatic
electron-phonon correlations.

Now Sio and colleagues have combined idealized polaron
models and supercell DFT approaches in a single formalism
[2, 3]. Their idea is to use DFT to find the ground-state en-
ergy of the polaron but to avoid explicit calculations for the
entire supercell. To do this, they express all relevant quan-
tities—the polaron’s wave function and formation energy,
the atomic displacements associated with the polaron, and
the effect of polarons on all the other electrons and atomic
nuclei—in terms of several ingredients. These ingredients,
which include the electron band structure, phonon disper-
sion relations, and electron-phonon coupling constants, can
be evaluated within the first Brillouin zone of the reciprocal
lattice. This strategy allows them to reformulate the polaron
problem as a standard nonlinear optimization problem that
requires DFT calculations only within one primitive cell of
the crystal, rather than within a prohibitively large supercell.

The authors show that the derived polaron equations are
essentially as accurate as explicit DFT calculations, while
offering additional perks. Most importantly, the equations
allow them to tackle systems that would have been be-
yond the reach of existing DFT approaches. For example,
they enable, for the first time, investigation of large po-
larons—polarons whose radii are much larger than the unit
cell of the material—with atomic-scale detail and in real
materials. What’s more, the new equations get rid of the
spurious polaron self-interaction.

Sio and colleagues demonstrate the power of their ap-
proach by computing polarons in LiF and in a well-known
material for lithium-ion batteries, Li2O2. Their computations
deliver a close-up view of the structure of the polarons at
the atomic scale. For example, the electron in LiF forms
a large polaron that looks like a lump of negative charge
that attracts Li+cations and repels F− anions (Fig. 1). While
the obtained features are in line with our physical intu-
ition of polarons, the new methodology allows the authors
to pinpoint precisely the electronic and vibrational states
that contribute to making the polaron. A striking result,
which had been missed in previous work, is that, contrary

to common belief, polarons in LiF arise not only from the
interaction with optical phonons but also from the interac-
tion with piezoacoustic phonons—that are responsible for
the piezoelectric effect.

We can expect many more surprises as the method is
applied to new and more complex materials. One can
envision that the approach could be generalized to in-
clude many-body interactions or to tackle excited polaron
states. But even in its present version, the new methodol-
ogy opens up exciting prospects for studying polarons in
low-dimensional materials, correlated-electron systems, and
topological quantum matter. An all-important application
would be studying how polarons transport electrical charge
in materials—a problem beyond the reach of previous mod-
els. Accurate polaron-transport models would significantly
impact the ab initio design of many optoelectronic materials
that hold promise for a wide range of applications—not only
OLEDs and touch screens but also organic transistors, solar-
driven photocatalysts, and hybrid and organic solar cells. A
century after Landau’s seminal remarks, we are getting up
close and personal with polarons, and this progress might
soon be felt in our everyday lives.

This research is published in Physical Review Letters and
Physical Review B.
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