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Neural Networks Take on Open
Quantum Systems
Simulating a quantum system that exchanges energy with the outside world is notoriously
hard, but the necessary computations might be easier with the help of neural networks.

by Maria Schuld∗,†, Ilya Sinayskiy††, and
Francesco Petruccione¶,‖,∗∗

N eural networks are behind technologies that are
revolutionizing our daily lives, such as face
recognition, web searching, and medical diagno-
sis. These general problem solvers reach their

solutions by being adapted or “trained” to capture cor-
relations in real-world data. Having seen the success of
neural networks, physicists are asking if the tools might
also be useful in areas ranging from high-energy physics
to quantum computing [1]. Four research groups now re-
port on using neural network tools to tackle one of the most
computationally challenging problems in condensed-matter
physics—simulating the behavior of an open many-body
quantum system [2–5]. This scenario describes a collection of
particles—such as the qubits in a quantum computer—that
both interact with each other and exchange energy with their
environment. For certain open systems, the new work might
allow accurate simulations to be performed with less com-
puter power than existing methods.

In an open quantum system, one typically wants to find
the “steady states,” which are states that do not evolve in
time. A formal theory for determining such states already
exists [6]. The computational difficulty arises when the sys-
tem contains more than a few quantum particles. Consider
a (closed) collection of N spins that can point either up or
down. The amplitude of the wave function for a given spin
configuration (say, up, down, up, up,. . . ) is a complex num-
ber whose absolute value squared gives the probability of
observing the configuration. To describe the entire spin sys-
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Figure 1: Four teams have designed a neural network (right) that
can find the stationary steady states for an ‘‘open’’ quantum
system (left). Their approach is built on neural network models for
closed systems, where the wave function was represented by a
statistical distribution over ‘‘visible spins’’ connected to a number
of ‘‘hidden spins.’’ To extend the idea to an open system, three of
the teams [3–5] added in a third set of ‘‘ancillary spins,’’ which
capture correlations between the system and environment.
(APS/Alan Stonebraker)

tem, a complex number has to be specified for each of the
2Npossible states. Simply storing this information for just 20
spins would take about 8 gigabytes of RAM, and the amount
would double with each additional spin. Handling the same
number of spins in an open system is even harder because
the spins must be described by a “density matrix” ρ with
2N × 2N matrix elements.

The attraction of a neural network is that it can potentially
approximate the wave function, or density matrix, with a
lot less information. A neural network is like a mathemat-
ical “box” that takes as its input a string of numbers (a
vector or tensor) and outputs another string. The box is
a parametrized function, and its parameters are optimized
for a given task. For the specific case of simulating an N-
body quantum system, the neural-network function serves
as a “guess” for the wave function, and the states of the N
objects serve as inputs. Researchers then optimize the func-
tion parameters by having the network “learn” from real or
simulated measurement data or by minimizing a physical
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quantity that depends on the wave function. Once the right
guess is in hand, it can be used to calculate other physical
properties, and with far fewer than 2N parameters.

In a 2017 paper, Carleo and Troyer showed that a neu-
ral network called a restricted Boltzmann machine [7]
could—with a small tweak—be used to represent states of
a closed system of many interacting spins [8]. The input for
this machine is a string of 0’s and 1’s—mimicking the up or
down state of spins in an array—and its output is a complex
number that provides the amplitude of the wave function. In
effect, the restricted Boltzmann machine replaces the interac-
tions between spins by “mediated” interactions with some
“hidden spins” (Fig. 1).

The four groups carry Carleo and Troyer’s approach to
open quantum systems [2–5]. The steady states of such sys-
tems are described by the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) equation [8], dρ/dt = L(ρ). This equation
looks similar to the regular Schrödinger equation, but it
solves for the density matrix ρ instead of a wave function,
and it involves the operator L, which is effectively the Hamil-
tonian plus some energy-loss terms.

The GKSL steady states satisfy dρ/dt = 0, and to find
them, the groups had to address three challenges. First,
they had to design a neural network function that repre-
sents a density matrix. Second, they needed to define a
“cost function.” This function expresses the difference be-
tween the neural network and the true quantum state and,
when minimized, yields the density matrix corresponding
to the desired steady state. Finally, they had to find a way
to perform this minimization numerically. Although they all
worked independently, the four teams arrived at fairly simi-
lar solutions to these problems.

Three of the teams—Hartmann and Carleo [3], Nagy and
Savona [4], and Vicentini et al. [5]—followed an idea from
a 2018 paper [9] and described the wave function for the
quantum system and its environment by adding a set of “an-
cillary” spins to the restricted Boltzmann machine (Fig. 1).
These extra spins ensure that the output of the neural net-
work has the mathematical properties of a density matrix.
Yoshioka and Hamazaki, however, derived the density ma-
trix without the ancillary spins and, in turn, relied on a
mathematical trick when using the matrix to calculate phys-
ical quantities [2].

The groups also varied in how they defined the cost func-
tion. Two teams used an indirect approach, based on a
so-called Hermitian operator, that has a guaranteed mini-
mization procedure [2, 5]. The two other teams opted for a
more direct approach that requires more complex minimiza-
tion methods [3, 4]. Finally, all of the teams used some form
of variational Monte Carlo scheme [9] for the minimization
step.

Each group tested their neural network approach by find-
ing the steady states of popular toy models: the dissipative
transverse-field Ising model in 1D [2, 5]; the XYZ model in

1D [2] and 2D [4]; and the anisotropic Heisenberg model in
1D [3]. Taking all the results together, the researchers con-
sidered system sizes that ranged from 4 to 16 spins. They
also compared their steady-state solutions with those found
from traditional approaches such as tensor networks and
numerical integration, finding striking agreement. For one
particular case, Hartmann and Carleo found that a solution
required 40 fewer parameters than the tensor network ap-
proach [3], an encouraging sign for neural networks.

Practitioners of machine learning are notorious for replac-
ing theoretically motivated, carefully hand-crafted models
with a one-size-fits-all model involving optimization tech-
niques that are “blind” to the application. This approach can
work embarrassingly well, and there is a good chance that
neural networks will become established tools for treating
some open quantum systems. Until then, these approaches
need to prove their value beyond toy models—as has in-
creasingly been done for the methods of closed quantum
systems. For example, can the new approaches handle
more spins, longer-range interactions, higher dimensions,
the fermion “sign problem,” or quantum particles that are
more complex than spins? Another unknown is whether a
neural network ansatz can be adapted to specific physical
settings, for example when simplifying symmetries in the
system or environment are known.

The ultimate toughness test would be to simulate a system
whose dynamics retain a memory of the past by virtue of
a strong interaction with the environment (non-Markovian
dynamics). Capturing the relevant interaction, however,
may ultimately require a quantum neural network, which is
run by algorithms that are specifically designed for quantum
computers.

This research is published in Physical Review Letters and
Physical Review B.
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