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A Random Approach to Quantum
Simulation
A new way to simulate a molecule is potentially much faster than other approaches because
it relies on random—as opposed to deterministic—sequences of operations.

by Dominic W. Berry∗

Q uantum computers process information in radi-
cally different ways than regular computers. But
how do you take advantage of that capability?
You can’t just run a normal program on a quan-

tum computer—you need a specialized algorithm to realize
the quantum advantage. Perhaps the most promising ap-
plication for such algorithms is the simulation of quantum
systems like molecules or materials, though an ongoing chal-
lenge is to design algorithms that can be run in a practical
amount of time. An approach proposed by Earl Camp-
bell of the University of Sheffield in the UK could speed
up the simulation of certain molecules [1]. His algorithm
uses a random—as opposed to deterministic—sequence of
operations. It may outperform other approaches when a
molecule’s energy is determined by many small contribu-
tions, and Campbell considers propane, carbon-dioxide, and

Figure 1: Quantum simulations of molecules aim to find the
electron occupancy of known orbitals, shown here for propane.
The approach by Campbell could greatly reduce the complexity of
such simulations [1]. (APS/Alan Stonebraker)
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ethane as test cases.
The kind of simulation Campbell considers is one where

you know the allowed orbitals on a molecule and want to
figure out the way electrons occupy them. This occupancy
involves superpositions of electron configurations that can
vary with time. Mathematically, this time evolution is ob-
tained from an exponential of the molecule’s Hamiltonian,
which is given by a sum of terms, each corresponding to a
different contribution to the molecule’s energy.

The first algorithm for simulating this kind of time evolu-
tion on a quantum computer was proposed by Seth Lloyd
in 1996. His algorithm expressed the Hamiltonian as a sum
of simple terms Hj and then approximated the time evo-
lution as a product of exponentials of those terms [2]—a
method known as the Lie-Trotter decomposition. Building
on Lloyd’s approach, researchers later figured out how to
estimate a molecule’s energy [3], which is needed to cal-
culate chemical reaction rates. There was a hitch, though:
If N orbitals are needed to describe a molecule, then the
number of terms in the Hamiltonian will scale as N4. Ac-
cording to early estimates, the number of operations—or
“gates”—that a quantum computer would need to simulate
the molecule would then scale as N10 [4, 5]. Since most in-
teresting systems—those that can’t already be simulated on
classical computers—have an N of more than 100, the com-
plexity of such a quantum simulation would be completely
impractical.

One way to rein in the complexity is to use a more so-
phisticated sequence of exponentials. Quantum simulation
algorithms like Lloyd’s split the total evolution time into
many short time intervals. Normally these time intervals
have to be very short to obtain an overall simulation that
is sufficiently accurate, but the so-called Lie-Trotter-Suzuki
decomposition provides similar accuracy with longer time
intervals [6]. Compared with other approaches, this decom-
position involves a smaller number of time intervals for a
fixed total evolution time, which means fewer exponentials
and therefore fewer gates. Moreover, the complexity of the
simulation scales more favorably with the total time or level
of accuracy [7]. But the Lie-Trotter-Suzuki method still has
the problem of a large number of terms in the Hamiltonian.
And even though some of these terms may be small enough
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to omit, dropping too many would reduce the accuracy of a
simulation.

Campbell proposes a radically new approach: Instead of
using all of the Hj terms in each time interval, randomly se-
lect just one at a time. In his recipe, larger terms are more
likely to be chosen than smaller ones, so that even though
most or all of the terms get used, the smaller ones are used
less frequently. The resulting complexity scales with the sum
of the sizes of the terms in the Hamiltonian, rather than
the number of them—an enormous advantage for quantum
chemistry problems involving millions of terms. The draw-
back is that by eschewing the full usage of terms in the
earlier deterministic approaches, such as Lie-Trotter-Suzuki,
the complexity scales somewhat poorly with the total time
and error. Therefore, for evolutions simulated over a long
time or requiring high precision, his method would have
worse performance than the Lie-Trotter-Suzuki approach.

A seeming contradiction of Campbell’s method is that the
error is significantly reduced if you effectively “forget” the
sequence of terms used and represent the molecule’s state
by averaging over the possible sequences. At first, this fea-
ture seems nonsensical: How can there be less error if you
have less information? In fact, it turns out that the error es-
timate based on not knowing the sequence is the one that
is realistic. The reason is that to obtain useful information
from a quantum simulation, you don’t just evolve the sys-
tem once. You need to run the simulation many times to
sample the statistics of the system. In each simulation, a dif-
ferent random sequence would be used, so the errors from
using particular sequences average out. A separate issue
about error is how best to quantify it when estimating en-
ergies. That’s because the methods for estimating energies
rely on an evolution over a long controlled time instead of
samples from repeated evolutions over shorter times.

The numbers of gates in this work is still quite large, over
a trillion for the molecules Campbell considered (propane,
carbon dioxide, and ethane). But those numbers might drop
if Campbell’s approach is combined with other methods,
such as the Lie-Trotter-Suzuki decomposition. Another pos-
sibility is taking a cue from “quantum signal processing”
(QSP) techniques [8]. QSP is analogous to Campbell’s ap-
proach in that it is aperiodic, but instead of being random,

QSP uses a sequence chosen by a sophisticated algorithm.
This method gives the best possible complexity scaling in
time and error when applied to alternative models of sim-
ulation like linear combinations of unitaries [9] or quantum
walks [10]. Perhaps Campbell’s approach could be deran-
domized and mimic QSP by harnessing a sophisticated algo-
rithm to choose a complexity-minimizing sequence. Finding
the right deterministic sequence would require a theoretical
breakthrough, but it could conceivably yield an algorithm
that combines the strengths of QSP and randomization.

This research is published in Physical Review Letters.
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