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Riding Waves in Neuromorphic
Computing
An artificial neural network incorporating nonlinear waves could help
reduce energy consumption within a bioinspired (neuromorphic)
computing device.

ByMarios Mattheakis

M achine learning has emerged as an exceptional
computational tool with applications in science,
engineering, and beyond. Artificial neural networks in

particular are adept at learning from data to perform
regression, classification, prediction, and generation. However,
optimizing a neural network is an energy-consuming process
that requires a lot of computational resources. One of the ways
to improve the efficiency of neural networks is to mimic
biological nervous systems that utilize spiking potentials and
waves—as opposed to digital bits—to process information. This
so-called neuromorphic computing is currently being

Figure 1: A potential design for an artificial neural network utilizing
nonlinear waves. In the encoding layer (left), data inputs are
written into the amplitude and phase of a set of waves. The waves
follow nonlinear evolution in the wave reservoir layer (middle). The
output is received at the readout layer (right) by combining the
results fromwavemeasurements. The network utilizes a reservoir
computing architecture, which means the weights in the input
layer (green) are fixed, whereas those in the output layer (orange)
are tuned during optimization.
Credit: APS/Alan Stonebraker

developed for intelligent and energy-efficient devices, such as
autonomous robots and self-driving cars. In a new
development, Giulia Marcucci and colleagues from the
Sapienza University of Rome have analyzed the potential of
using nonlinear waves—such as rogue waves and solitons—for
neuromorphic computing [1]. These waves interact with each
other in complex ways, making them inherently suited for
designing neural network architectures. The researchers
consider ways to encode information on the waves, providing
recipes that could guide the development of machine-learning
devices that can take advantage of wave dynamics.

A necessary neural network ingredient is complexity, which
allows the system to approximate a given function or learn from
a dataset. An example of this complexity is how a deep
feed-forward network processes information. It consists of an
input layer, hidden layers, and an output layer. From the input
to output layers, information propagates through a complex
system of hidden “neurons,” which are fully or partially
connected to each other. The connections between neurons are
characterized by parameters, or “weights.” The neurons
perform linear and nonlinear transformations yielding a
nonlinear mapping between the input and output. Optimizing
the network consists of feeding it a training dataset and tuning
the weights to arrive at a desired relationship between inputs
and outputs. The nonlinearity in the information processing is a
necessary condition for the network to become a universal
approximator, which means it can represent any function when
given appropriate weights.

An avenue for improving the efficiency of neural networks is to
adopt neuromorphic techniques, which can provide extremely
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fast real-time computing at a low energy cost. Recent work has
demonstrated neuromorphic computing in deep (multilayered)
networks with representative platforms that include coherent
nanophotonic circuits [2], spiking neurons [3], and waves [4].
But an open problem in neuromorphic computing of deep
networks is the optimization of the parameters. Deep networks
require many connections to be sufficiently complex; thus the
training usually requires a lot of computational power. To
reduce these computing demands, researchers have suggested
alternative architectures, such as reservoir computing (RC) [5].
The input and hidden nodes in an RC network are randomly
initialized and fixed, while only the weights of the output layer
need to be trained. This approachmakes the optimization more
efficient than regular architectures, yet the network retains the
requirements for learning complexity. Proposed designs for RC
neuromorphic devices involve optoelectronic technology [6],
photonic cavities [7], and photonic integrated circuits [8].

Marcucci and colleagues have now added to this list of potential
RC neuromorphic devices with their proposed architecture
based on wave dynamics [1]. They show the possibility of
building a device that is able to learn by harvesting nonlinear
waves. Nonlinear waves, such as solitons, breathers, and rogue
waves, show divergent behavior and provide sufficient
complexity to develop a learning method. The proposed
architecture, called single wave-layer feed-forward network
(SWFN), goes beyond standard neuromorphic RC because the
reservoir comprises nonlinear waves rather than using
randomly connected hidden nodes. In other words, the coupled
artificial hidden neurons have been replaced by waves that
interact naturally through interference. The SWFN architecture
consists of three layers (Fig. 1): the encoding layer,where an
input vector is written into the initial amplitude or phase of a
set of representative waves; the wave reservoir layer, where the
initial state evolves following a nonlinear wave equation; and
the readout layer, where the output is recovered from the final
state of the waves. As this network is an RC one, only the
weights in the readout layer need to be trained.

Although wave dynamics have been used in neuromorphic
computing [4, 7], a general theory that links nonlinear waves
with machine learning was missing. Marcucci and co-workers
introduced a general and rigorous formulation, bridging the gap
between the two concepts. For their model system, the
researchers encoded the input vector in the initial state of a set

of plane waves and represented the wave evolution in the
reservoir layer with the nonlinear Schrödinger equation—but
any nonlinear wave differential equation would have worked. In
fact, any system that is characterized by nonlinear wave
dynamics can be used to build a neuromorphic nonlinear wave
device. A simple example would be a wave tank with several
wave generators on one end and wave detectors on the other.

From their general analysis, the researchers showed that two
conditions must be fulfilled for a transition to the learning
regime. First, the wave evolution must be nonlinear, as linear
evolution would prevent the SWFN from being a universal
approximator. The second condition connects the number of
output channels with the size of the training data. Specifically,
the number of output nodes has to be the same as the number
of training data points per input node for the SWFN to
approximate a function or to learn a finite dataset.

Marcucci and colleagues present three different encoding
methods through three representative examples. First, the
SWFN is used to approximate a one-dimensional function that
maps a binary string to the initial phase of a set of waves. In the
second example, the neuromorphic device is asked to learn an
eight-dimensional dataset that is encoded in the initial
amplitudes of the waves. In the last example, the researchers
show that the proposed neuromorphic architecture can be used
as Boolean logic gates that operate on two binary inputs. In
each case, the SWFN performs as well as conventional neural
networks verifying that SWFN is indeed a universal
approximator able to approximate arbitrary functions and learn
high-dimensional datasets.

Neural network technology is a rapidly growing scientific field,
and neuromorphic computing can offer an energy-efficient way
to meet the technology’s computing demands. Marcucci and
colleagues have provided a recipe for a neuromorphic neural
network using nonlinear wave dynamics. This groundwork
opens the door to a wide range of nonlinear-wave phenomena
in electronics, polaritonics, photonics, plasmonics, spintronics,
hydrodynamics, Bose-Einstein condensates, andmore. Among
these wave-based technologies, photonics seems very
promising, as photonic materials absorb little energy and can
be fashioned into circuit elements at micro- or nanoscales. The
computing in a photonic neural network is as fast as the speed
of light, and different signals can be encoded in different
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frequencies, allowing multiple computations to be performed
simultaneously. With such potential, it’s easy to imagine
neuromorphic devices riding these waves to technological and
engineering achievements in the near future.
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