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How Laggards Help
Decision-Making
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Collective decision-making in a social network is better when there are

both early adopters and laggards.

By Richard A. Blythe

hen a new technology, such as the electric car, comes

to market, consumers have to decide if they are

going to adopt the innovation, and if so, which of the
different brands and models to choose. Typically,
decision-makers fall into “early adopter” and “laggard”
categories [1], according to their propensity to innovate.
Previous models have investigated different influences on
decision-making [2] but have generally neglected how
individuals consider the decisions of others in making up their
own minds. Now Bhargav Karamched of Florida State
University and colleagues have developed a model in which
laggards evaluate an innovation by accounting for early
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Figure 1: Sketch of the collective decision-making process
described by Karamched et al. [3]. In a population of undecided
agents (blue), an early adopter (red) makes a poor decision. Seeing
this decision, a set of early adopters follow suit, but a slightly larger
set of early adopters (green) picks the most beneficial solution.
After observing the decision-making dynamics of the early
adopters, laggards make their decision, leading a large fraction of
the population to correct the initial, poor decision.

Credit: APS/Alan Stonebraker

adopters’ decisions [3]. The researchers find that laggards can
help the group as a whole to reach a more beneficial decision
without slowing down the decision-making process.

Over the past few years, techniques from statistical physics
have helped researchers develop sociophysics models
describing complex systems made of interacting agents. These
models have shed light, for instance, on the dynamics of
opinions within human societies [4] and on the evolution of
languages and dialects [5]. A central component of all these
models is the random walk—a path resulting from a series of
random steps. In decision-making models, the random walk is
performed by a parameter () quantifying how an individual
agentis disposed toward a particular opinion or behavior. i can
go up or down as the agent gathers information. In assessing
electric vehicles, for example, the environmentally friendly
attitude of an agent might push y up, whereas the thriftiness of
another agent would pull y down.

In a wealthy and environmentally conscious society, v will
increase over time for most agents, driving a majority of the
population to favor a decision that maximizes societal
benefits—adopting electric cars. However, individual decisions
are unpredictable: they can depend on an agent’s state of mind
on a particular day. Therefore, i follows a “biased” random
walk: as it evolves toward the socially responsible outcome, it
doesn’t march straight toward it but fluctuates along the way.
Determining if and when this stochastic process reaches a
certain threshold—triggering a decision to buy an electric
car—is a so-called first-passage problem [6].

Traditional sociophysics tackles decision-making processes by
describing the evolution of beliefs with rules derived by fitting
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empirical data or by appealing to phenomenological principles
[2, 4]. These approaches have successfully reproduced some
features of collective decisions but cannot account for many
psychological aspects that are relevant to these processes.
Karamched and colleagues apply a model grounded in
Bayesian statistics to describe how decisions by small groups of
agents can offer information to the rest of the population that is
still undecided [7]. Bayesian statistics is a mathematical
framework often applied to processes in which the probability
of an event depends on prior beliefs or knowledge related to
the event. There is evidence that human reasoning and
decision-making can be modeled as Bayesian inference, which,
in turn, has facilitated the development of artificial-intelligence
algorithms that mimic cognitive functions associated with the
human mind [8].

Karamched and colleagues show that the accumulation of
private information corresponds to a random walk driven by a
constant force that drives each individual’s y in the direction of
the outcome that would be favored by the majority of
individuals. In their model, an agent makes their decision once
the belief is sufficiently strong: if iy reaches a threshold value
+0, the agent commits to the favorable option; if instead it hits
—0, the agent opts for the less favorable outcome. The value of
6 depends on an agent’s personality: it’s small for an early
adopter and large for a laggard.

Initially, all agents are undecided, with a random distribution of
opinions (y’s) that will slowly become skewed toward the
favorable decision because of individual research. But when the
first agent makes a decision, the rest of the group sees this
decision. In the researchers’ model, observers react by
adjusting their own y exactly by the threshold value of the
decider ( 46 or —6), depending on which decision was made.
What happens next depends on whether the population is
homogeneous (all agents have the same threshold) or
heterogeneous (there is a mix of early adopters and laggards
with different thresholds).

For a homogeneous society, if the first decider goes for the
favorable option, it will persuade any agent with a positive i to
make the same decision. Because of the drift toward the
favorable decision, a little over half the population falls into this
category, which will persuade the remaining agents that the
first decision was a good one. On the other hand, if the first
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decision is unfavorable, the agents with negative y will follow
the leader, but they will account for slightly less than half the
population. With that information, the undecided agents can
infer that the first decision was unfavorable and pick the
favorable one. Despite the poor initial decision, a slight
majority will pick the most beneficial option.

If the society is split into early adopters and laggards, however,
the decision-making dynamics are different (Fig. 1). In the
model, when an early adopter makes a decision, laggards
modify their iy by a value corresponding to the early adopter’s
threshold, which is much smaller than their own threshold. In
other words, laggards recognize that an early adopter’s decision
is hasty and unreliable and assign a smaller weight to it. As a
result, only the early adopters are strongly influenced by the
first decisions, while laggards will only react when a sufficient
number of early adopters have followed the first decider.
Hence, smaller pools of adventurous explorers will form,
exploring possible decisions and providing feedback that the
laggards can follow. The model shows that, even with a poor
initial decision, a larger fraction of the population, compared to
the homogeneous case, will ultimately end up choosing the
favorable option.

The results demonstrate how the skepticism of laggards can act
for the greater good by basing the collective decisions on more
reliable data. Nevertheless, early adopters remain essential:
without their hasty decisions, there is no information for the
laggards to exploit. Moreover, the speed of early adopters’
decisions allows the collective decision to be reached faster
than if laggards are left to accumulate information by the slow
process of individual research alone. Depending on the
specifics of the population, the researchers find that there is an
optimal adopter-laggard fraction that maximizes the
decision-making outcome.

It would be interesting to devise experiments or observations to
test whether heterogeneous groups make group-beneficial
decisions in the real world, as predicted by the new model. An
outstanding question is whether a key model assumption is
justified: are people actually able to assign a lower weight to
the first, risky decisions of the early adopters? Experience from
public health campaigns [1] suggest this may be the case: it
generally proves more effective to target laggards than early
adopters, who, by virtue of their innovativeness, tend to be
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ignored by the rest of the society. At a time in which the
widespread adoption of health measures and behavioral
changes is critical, the insights coming from models like the one
proposed by Karamched and colleagues could perhaps help
public-health campaigners identify whom to target to spread
their message most effectively.

Richard A. Blythe: School of Physics and Astronomy, University of
Edinburgh, Edinburgh, United Kingdom
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