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Imperfections Lower the
Simulation Cost of Quantum
Computers
Classical computers can efficiently simulate the behavior of quantum
computers if the quantum computer is imperfect enough.

By Jordi Tura

W ith a few quantum bits, an ideal quantum
computer can process vast amounts of information
in a coordinated way, making it significantly more

powerful than a classical counterpart. This predicted power
increase will be great for users but is bad for physicists trying to
simulate on a classical computer how an ideal quantum
computer will behave. Now, a trio of researchers has shown
that they can substantially reduce the resources needed to do
these simulations if the quantum computer is “imperfect” [1].
The arXiv version of the trio’s paper is one of themost “Scited”
papers of 2020 and the result generated quite a stir when it first
appeared back in February—I overheard it being
enthusiastically discussed at the Quantum Optics Conference in
Obergurgl, Austria, at the end of that month, back when we
could still attend conferences in person.

In 2019, Google claimed to have achieved the quantum
computing milestone known as “quantum advantage,”
publishing results showing that their quantum computer
Sycamore had performed a calculation that was essentially
impossible for a classical one [2]. More specifically, Google
claimed that they had completed a three-minute quantum
computation—which involved generating random numbers
with Sycamore’s 53 qubits—that would take thousands of years
on a state-of-the-art classical supercomputer, such as IBM’s
Summit. IBM quickly countered the claim, arguing that more
efficient memory storage would reduce the task time on a
classical computer to a couple of days [3]. The claims and
counterclaims sparked an industry clash and an intense debate
among supporters in the two camps.

Resolving the disparity between these estimates is one of the
goals of the new work by Yiqing Zhou, of the University of
Illinois at Urbana–Champaign, and her two colleagues [1]. In
their study, they focused on algorithms for classically
replicating “imperfect” quantum computers, which are also
known as NISQ (noisy intermediate-scale quantum) devices [4].
Today’s state-of-the-art quantum computers—including
Sycamore—are NISQ devices. The algorithms the team used are
based on so-called tensor network methods, specifically matrix
product states (MPS), which are good for simulating noise and
so are naturally suited for studying NISQ devices. MPSmethods
approximate low-entangled quantum states with simpler
structures, so they provide a data-compression-like protocol
that canmake it less computationally expensive to classically
simulate imperfect quantum computers (see Viewpoint:
Pushing Tensor Networks to the Limit).

Zhou and colleagues first consider a random 1D quantum
circuit made of neighboring, interleaved two-qubit gates and
single-qubit random unitary operations. The two-qubit gates
are either Controlled-NOT gates or Controlled-Z (CZ) gates,
which create entanglement. They ran their algorithm for NISQ
circuits containing different numbers of qubits, N, and different
depths, D—a parameter that relates to the number of gates the
circuit executes (Fig. 1). They also varied a parameter χ in the
MPS algorithm. χ is the so-called bond dimension of the MPS
and essentially controls howwell the MPS capture
entanglement between qubits.

The trio demonstrate that they can exactly simulate any
imperfect quantum circuit if D and N are small enough and χ is
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Figure 1: Researchers show that they can simulate the above 1D
quantum circuit with a classical one if the quantum computer is
imperfect enough. N is the number of qubits, and D is the number
of gates the circuit executes and is equivalent to increasing time in
the image. The colored squares represent random one-qubit gates,
and the dots connected to a cross-containing box represent
two-qubit Controlled-NOT or Controlled-Z gates.
Credit: APS/Carin Cain

set to a value within reach of a classical computer. They can do
that because shallow quantum circuits can only create a small
amount of entanglement, which is fully captured by a moderate
χ. However, as D increases, the team finds that χ cannot
capture all the entanglement. That means that they cannot
exactly simulate the system, and errors start to accumulate. The
team describes this mismatch between the quantum circuit and
their classical simulations using a parameter that they call the
two-qubit gate fidelity fn. They find that the fidelity of their
simulations slowly drops, bottoming out at an asymptotic value
f∞ as D increases. This qualitative behavior persists for
different values of N and χ. Also, while their algorithm does not
explicitly account for all the error and decoherence
mechanisms in real quantum computers, they show that it does
produce quantum states of the same quality (perfection) as the
experimental ones.

In light of Google’s quantum advantage claims, Zhou and

colleagues also apply their algorithm to 2D quantum
systems—Sycamore is built on a 2D chip. MPS are specifically
designed for use in 1D systems, but the team uses well-known
techniques to extend their algorithm to small 2D ones. They use
their algorithm to simulate an N = 54, D = 20 circuit, roughly
matching the parameters of Sycamore (Sycamore has 54 qubits
but one is unusable because of a defect). They replace Google’s
more entangling “iSWAP” gates with less entangling CZ gates,
which allow them to classically simulate the system up to the
same fidelity as reported in Ref. [2] with a single laptop. The
simulation cost should increase quadratically for iSWAP-gate
circuits, and although the team proposes a method for
performing such simulations, they have not yet carried them
out because of the large computational cost it entails.

How do these results relate to the quantum advantage claims
by Google? As they stand, they do not weaken or refute
claims—with just a fewmore qubits, and an increase in D or f∞,
the next generation of NISQ devices will certainly be much
harder to simulate. The results also indicate that the team’s
algorithm only works if the quantum computer is sufficiently
imperfect—if it is almost perfect, their algorithm provides no
speed up advantage. Finally, the results provide numerical
insight into the values of N, D, f∞, and χ for which random
quantum circuits are confined to a tiny corner of the
exponentially large Hilbert space. These values give insight into
how to quantify the capabilities of a quantum computer to
generate entanglement as a function of f∞, for example.

So, what’s next? One natural question is, Can the approach here
be transferred to efficiently simulate other aspects of quantum
computing, such as quantum error correction? The circuits the
trio considered are essentially random, whereas quantum error
correction circuits are more ordered by design [5]. That means
that updates to the new algorithm are needed to study such
systems. Despite this limitation, the future looks promising for
the efficient simulation of imperfect quantum devices [6, 7].
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