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Machine Learning Tackles Spacetime
Neural networks enable an important calculation in a popular approach to unifying quantum
mechanics with general relativity.

by Enrico Rinaldi1,2

I n a breathtaking reveal last year, the Event Horizon
Telescope gave the world its first view of a black hole’s
shadow. But what exactly goes on inside a black hole?
General relativity would tell us that a black hole is a sin-

gularity in spacetime, a mathematical feature at odds with
the fuzziness of quantum mechanics. If scientists want to
understand what’s happening inside a black hole, they will
have to unify the two theories. So far, the most popular for-
mulation of a quantum theory of gravity has been in terms

Figure 1: Physicists are taking advantage of neural networks to
develop a description of spacetime geometry that is consistent
with quantum mechanics. (APS/Alan Stonebraker)
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of string theory. A major sticking point, however, has been a
prohibitively complex calculation of a quantum-mechanical
wave function. New work by Xizhi Han and Sean Hart-
noll from Stanford University, California, demonstrates that
neural networks—much like those used to generate realistic
images of faces—may make this calculation much easier to
do [1]. Their results open up a new way to explore the quan-
tum properties of gravity with a computational approach,
allowing theorists to “experiment" with gravity.

Unifying general relativity and quantum mechanics into
a theory of everything was a dream of Einstein’s. Among
string theorists, the most promising route to this unification
is a conjectured “duality” between certain string theories of
gravity and certain quantum (gauge) theories of interacting
degrees of freedom (such as particles) [2]. A duality connects
two theories that describe seemingly disparate physical sys-
tems, much like a dictionary relates the words and concepts
of two languages. Physicists find this connection extremely
useful because they can solve a very hard problem pertain-
ing to one system in the potentially easier “language” of the
other (dual) system. Although the gauge-gravity duality is a
conjecture, it has been shown to work for special cases where
the same property could be calculated in both the “easy” and
“hard” ways [3].

How might the gauge-gravity duality bring us closer to
understanding spacetime on a quantum scale? The answer
is that the duality allows us to describe the geometry of a
black hole—its spacetime shape—in terms of the collective
behavior of quantum objects. We can then try to understand
how the geometry of spacetime emerges from microscopic
degrees of freedom. The wrinkle in this plan is that de-
scribing the quantum side of the duality involves prohibitive
calculations. String theorists are therefore integrating new
computational tools from other disciplines, such as com-
puter science and statistics.

This approach is the spirit behind the new work from Han
and Hartnoll, who have used neural networks precisely to
describe a system of quantum objects that, though simpli-
fied, captures the essential properties of spacetime geometry
(Fig. 1). More specifically, they find the ground-state wave
function of this many-body system, from which all of the
system’s properties can be determined from first principles.
Calculating such a wave function is notoriously difficult be-
cause the wave function is so complex. Moreover, the best
method of computing it will usually depend on the wave
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function’s mathematical form, which is unknown for the sys-
tems relevant to the gauge-gravity duality.

The Stanford duo’s approach builds on a pioneering paper
from 2016 [4], which showed the potential for finding the
many-body wave function using artificial neural networks.
Generically, a neural network takes an input, applies a series
of mathematical operations to it, and spits out a number. For
a lot of familiar applications, a neural network is “trained”
with data to recognize inputs (say, a face). In the search for
a quantum system’s wave function, however, one uses the
network’s innards to represent a trial wave function and to
calculate the system’s energy, relying on a separate iteration
scheme to choose “better” wave functions that yield a lower
energy value.

Taking this approach, Han and Hartnoll adapted a mod-
ern neural network to represent the wave function of a quan-
tum system described by the so-called mini-BMN model.
This model uses three matrices to represent the system’s fun-
damental degrees of freedom and their interactions [5]. It’s a
smaller version of the model that’s actually dual to the string
theoretic description of spacetime near a black hole, which
has nine matrices. Researchers have been able to estimate
observables associated with mini-BMN using methods such
as stochastic Monte Carlo simulations [3]. But these methods
are computationally expensive and don’t give direct access
to the wave function or to geometric properties (though a
possible workaround exists [6]). Using the neural network,
Han and Hartnoll are able to efficiently extract an approx-
imate wave function with enough information to describe
gravity in a previously unexplored quantum regime.

To start, the researchers define the quantum wave function
as a parametrized probability distribution over the matrices
of the mini-BMN theory. They then use an iterative pro-
cedure to find the parameters that minimize the energy of
the system. This “training process” is like shaking a bucket
of sand until it’s level: With each shake, the grains rear-
range themselves into a new configuration that removes
some of the bumps and lets the sand lie flatter. Similarly,
the optimization procedure selects the parameters yield-
ing the “best” ground-state wave function among a family
of distributions. Thanks to the fact that they based their
neural network on so-called deep generative flows [7], the
researchers could efficiently sample many different com-
plex wave functions and find the most accurate one for the
ground state.

To benchmark their wave function, Han and Hartnoll use
it to calculate certain observables in a semiclassical regime,

where their results can be compared to existing calculations.
For example, they recover emergent geometric properties
predicted in string theory, such as the existence of fuzzy
sphere states. They can also describe the quantum entan-
glement of these states, a key element of quantum gravity.

As noted, the mini-BMN theory describes only a smaller
version of the actual quantum system in the gauge-gravity
duality. But Han and Hartnoll have ushered in a pow-
erful computational tool for extracting geometrical proper-
ties—and that’s truly inspiring. This tool can be used as a
benchmark for future neural-network algorithms designed
for quantum gravity, more of which can be expected now
that their potential is clear. Algorithms in computer sci-
ence have improved at an astonishing rate. If the same
progress carries over to the physical sciences [8], a scien-
tific revolution will be afoot. Of course, machine learning
is not magic—it works only with certain kinds of inputs and
therefore only for certain problems. But it is an important
tool that allows scientists to satisfy their curiosity for the un-
known. From the confinement of quarks and gluons into
protons to the emergence of spacetime, some of the biggest
open questions in quantum field theory could benefit from
machine-learning tools.

This research is published in Physical Review X.
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