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Excavating Topology to Find
Structure
Eighteenth century mathematics of soil transport helps uncover hidden
order in disordered systems, such as tissues and glasses.

By Suraj Shankar

U pon casual glance, the stars in the night sky might
appear randomly placed. But look more carefully, and
patterns—known as constellations—emerge in the sky.

The building blocks of many softmaterials, including glasses,
granular media, and biological tissues, also appear randomly
arranged yet often contain similar hidden patterns. Now
Dominic Skinner at the Massachusetts Institute of Technology
and colleagues introduce a technique that can reveal some of
that subtle order [1]. Their computationally tractable method
combines centuries-old mathematical ideas about soil
transport and supply-chain optimization with more modern

Figure 1: Researchers can distinguish patterns in biological tissues
by determining how easily they canmorph one pattern into
another. A newmethod that adapts techniques used to study soil
excavation and transport could help better quantify this process.
Credit: APS/Joan Tycko

notions of topology in random networks (Fig. 1). Their work
adds to a growing list of geometric and topological tools used to
characterize softmaterials.

Patterns and structures are key to understanding the
mechanical and dynamical properties of many systems. For
example, when logs flow in a river, their orientation with
respect to one another determines whether they jam the river
or whether they flow smoothly downstream; for metals, the
topology of defects in the arrangement of their atoms
determines, among other things, whether the metals stretch or
fracture when a load is applied. Researchers have explained
how the geometry and topology of structural motifs in ordered
softmaterials, such as a coherently swimming bacterial swarm
or an oriented liquid crystal, relate to a material’s emergent
macroscopic properties [2, 3]. However, extending this
understanding to disordered soft systems is a notoriously
challenging problem.

But there have been some breakthroughs. Data-driven
approaches, including machine learning, have been successful
in characterizing structural motifs in systems ranging from
glasses [4] to leaf venation [5]. And recently, high-resolution
imaging techniques have also allowed researchers to uncover
and quantify the link between the shape and connectivity of
cells in an epithelial monolayer to understand the factors
determining the rigidity or fluidity of the layer. [6, 7]. The new
technique from Skinner and colleagues fits in with this research
effort. It provides a way to quantify the arrangement of cells in a
tissue or of particles in disorderedmedia and to use that
quantification to classify properties such as the material’s
phase behavior.
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Figure 2: Skinner and colleagues built their networks (blue) by
connecting the centers of adjacent cells. To compare networks, the
team counted the number of edge flips needed to transform one
network into another. An example of an edge flip is shown on the
right, where the rearrangement of the pink and yellow cells
changes the connections between the nodes of the resulting
networks.
Credit: APS/Joan Tycko

In their study, the team approximated a 2D epithelial layer with
a 2D network of triangles. They also studied jammed granular
packings and collections of self-propelled particles, such as
bacteria, to demonstrate the versatility of their technique. The
nodes of the network represent the central points of the cells or
particles and the edges connect them to their neighbors (Fig. 2).
The team calculated the spatial variations in the number and
geometry of a cell’s contacts over the entire tissue to obtain a
statistical representation of the network’s local structure.

That representation allowed the team to quantify a given
network, but they also wanted to compare two different
networks, for example those from two different tissues or those
from the same tissue at two different times. To do that, they
studied the local arrangement of vertices in the network by
counting the number of “edge flips” needed to transform one
network into another. An edge flip occurs when the dividing line
between two triangles in a polygon switches the corners of the
polygon that it connects (Fig. 2). These events take place
naturally in cellular systems when two cells exchange
neighbors.

Enumerating and comparing the catalog of possible contact

networks for two different systems (for example, two different
epithelial monolayers) is a computationally prohibitive task in
all but the most trivial of situations. To get around this issue,
Skinner and his colleagues turned to the problem of optimal
mass transport.

The problem of optimal mass transport has a long and rich
history: It was posed in the 18th century by the mathematician
Gaspard Monge, who wanted to optimize the transport of soil
for construction; but it was in the 1930s when the
mathematician and economist Leonid Kantorovich found the
answer. The problem, now known as the Monge–Kantorovich
problem, has deep connections to resource allocation,
optimization theory, and hydrodynamics, along with a range of
applications in image analysis andmachine learning [8]. By
framing their network-topology-comparison problem as an
optimal transport one, Skinner and colleagues were able to
leverage existing tools to find a computationally efficient
solution that is both practical and interpretable.

With their method, the team show that by analyzing a series of
static images of networks (temporal snapshots of a tissue
during its development, for example), they can detect an arrow
of time. They can also identify phase boundaries and
phase-separated states, and they can distinguish jammed
mixtures made from particles of different shapes and sizes,
such as M&Ms and rice grains. While such particle-identity
discrimination is possible with other methods, the approach of
Skinner and his colleagues can quantitively distinguish the
networks that characterize these two systems “blindly,” without
ever knowing that one network is for M&Ms and the other is for
rice. This achievement is significant as both networks quantify
subtle structural features in these disordered systems, and they
connect them back to large-scale properties of the materials.
The method is also attractive because of its computational
tractability.

It is clear that the newmethod is a promising data-driven tool
for classifying structural properties of soft systems. But more
work is needed to understand the method’s limits, as well as its
broader relevance. The ability to discern the chronological
sequence of events from static snapshots offers a way to
quantify irreversibility in dissipative systems, which is an
attractive avenue for further exploration. A deeper
understanding of the connection the teammakes between
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optimal mass transport and statistical geometry is also a
worthwhile goal.

It would also be interesting to combine this method with other
information-theoretic-based techniques that have recently
been proposed to capture hidden order [9]. While the use of
topological edge flips was motivated by naturally occurring cell
behaviors, related phenomena are prevalent in many fields,
such as in discretized quantum gravity (where they capture the
fluctuating geometry of spacetime) and in crystallography
(where they give rise to defects with atomic rearrangements
similar to those in Fig. 2). It may thus be fruitful to relate edge
flips in tissues to defects present in crystals and other soft
matter [3]. Finally, recent work has highlighted the relevance of
optimal transport in deciphering the genetic lineage of cells
during embryonic development [10], suggesting that biology
may have more uses for earth-moving mathematics hidden up
her sleeve.
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