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Measuring Entropy Production
at the Mesoscale
Theorists place bounds on the energy consumption of a mesoscopic
nonequilibrium system using parameters that are experimentally
accessible.

By Ana-Sunčana Smith

O ver the last three decades, statistical physics has gone
from being able to describe systems in, and close to,
equilibrium to being able to describe certain classes of

far-from-equilibrium systems. Specifically, an exact

Figure 1: Researchers have developed amodel that can place a
lower bound on the energy consumption of a nonequilibrium
system using the waiting time distribution of transitions between
its “metastates”—the coarse grained nonequilibrium steady states
of the system. They tested the model using data from a number of
systems, including cows transitioning from standing up to lying
down.
Credit: APS/Carin Cain

thermodynamic framework was developed, defining entropy
production, applied work, and heat exchange in small
nonequilibrium systems submerged in a thermal bath.
Prototypical examples of such systems are molecular motors or
the receptors responsible for cellular sensing, in which
transition rates between different well-defined steady states
can be fully characterized [1]. Recently, however, researchers
have started to consider larger—mesoscopic and
macroscopic—nonequilibrium systems, such as cells, tissues,
and entire organisms, for which it is impossible to identify all of
a system’s microscopic states. To tackle this problem, Dominic
Skinner and Jörn Dunkel of the Massachusetts Institute of
Technology developed amesoscopic model that defines a
lower bound on energy consumption by using an
experimentally accessible parameter. This parameter is the
waiting time distribution of transitions between the so-called
metastates—the coarse-grained, observable steady states of the
system [2]. As such, the model provides a route to directly
measuring the extent to which a mesoscopic system is out of
equilibrium.

According to classical thermodynamics, no system—not even
an ideal frictionless one—can transform all its heat into work,
which limits the efficiency of thermodynamics-based devices,
such as heat engines. The measure that indicates the
availability of thermal energy for mechanical work is entropy,
which, according to the second law of thermodynamics, is
produced at a positive rate by every irreversible process. As
such, entropy production quantifies the “cost” of keeping a
system in a nonequilibrium steady state. Complementary facets
of the second law are the necessity of energy dissipation in
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finite-time processes and the lack of dissipation in quasistatic
systems, two effects that are recovered by linear response
theory [3].

Life, however, is associated with processes such as growth,
self-organization, maintenance, and aging that occur far
beyond the linear response. Nonetheless, the rates at which
energy is consumed and entropy is produced while sustaining
life are limited. As such, they reflect, for example, the
thermodynamic cost of living and hence determine the capacity
of an organism to survive by sensing the environmental
conditions and adapting to changes in its surroundings [4].

In their model, Skinner and Dunkel consider a mesoscale
system in contact with a heat bath. Rather than focusing on
transitions betweenmicroscopic steady states, they use a
coarse-grained approach to calculate how the system evolves
between twometastates. For a cow, this state can be as general
as standing or sitting, for example. The theory relies on
measuring the variance of the time that the system spends in
each of those two states. Through optimization techniques,
they then use those statistics to calculate the lower bound for
entropy production. Their new expression complements the
recently introduced thermodynamic uncertainty relation, which
also uses the waiting time distributions for transitions between
coarse-grained nonequilibrium steady states to calculate the
bound on entropy production [5].

To demonstrate the usefulness of their approach, Skinner and
Dunkel applied it first to active sensors, such as those used by
cells to monitor the concentrations of chemicals in their
environment. These sensors can increase their sensing
accuracy by expending energy, overcoming the equilibrium
sensing limit [6]. By calculating explicitly the entropy
production rate, which is possible in this simple system, the duo
finds that their predicted lower bound produces a good
estimate for small and intermediate entropy production rates
outperforming the thermodynamic uncertainty relation.
Furthermore, they confirm that much larger variances can be
generated with much smaller energy consumption rates if
additional microscopic states are introduced.

Skinner and Dunkel then apply their model to already
published data on energy consumption in experimental
systems ranging from gene regulatory networks to cows, where

microscopic steady states are clearly out of reach. They
demonstrate that a meaningful insight into the energy
consumption can be obtained without an understanding of the
underlying determinants of the states of these systems. Finally,
they also consider data from “precise timers” that exhibit small
variances in their ticks, such as heart beats. In this case, it is not
possible to numerically estimate the entropy production rate,
so Skinner and Dunkel derive an analytical expression that
relates the variance in beating time to the entropy production
rate in the limit of infinite precision. The duo shows that the
entropic cost of maintaining a heart’s beating time decreases
roughly linearly with increasing variance in the normalized
waiting time distribution of the beats: Or put another way, the
data imply that it is less costly to maintain the heartbeat of a
young person than it is to maintain that of an old one.

These examples were chosen to emphasize the ease of use of
their approach to analyze experimental data and to highlight
the theory’s applicability, accuracy, and its lack of assumptions
on the system’s underlying microscopic states. The chosen
examples also demonstrate the versatility of the model: In
many systems, only the coarse-grained states can be fully
characterized—the cow is either standing or lying down. The
model nonetheless provides a reasonable estimate for an
entropy production rate as a function of the cow’s living
conditions.

Thanks to the model, which performs reasonably even with
limited data, it is now truly a simple exercise to obtain an
estimate of the entropy production rate of a mesoscopic
system. It is also now possible to consider entropy production
rate as a parameter of the evolutionary design of a living
organism, which is an exciting possibility. A natural next step is
to extend the theory to address the time evolution of a system’s
steady state as it ages. Tools like the one developed here by
Skinner and Dunkel set the foundation for understanding what
limits the sensing and adaptation of a living system, a
perspective that will likely have far-reaching consequences.
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