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Speeding Up Ultrafast
Spectroscopy
A signal-processing algorithm called compressive sensing lets researchers
characterize a sample with ultrafast spectroscopy using far fewer
measurements than before. 
By Rachel Ostic and Jean-Michel Ménard

U ltrafast spectroscopy would be
an ideal characterization technique for many scientific
and industrial applications if only it weren’t so slow. To

accurately characterize a given sample, thousands of
time-consuming individual measurements must usually be
made, adding up to a process that can take minutes or even
hours. But what if we could forgomost of these measurements
without compromising the technique’s reliability? This solution
may seem too good to be true, but it is one that has now been
demonstrated by Sushovit Adhikari at the Argonne National
Laboratory, Illinois, and colleagues. The team applied an
algorithmic approach called compressive sensing (CS) to two
ultrafast spectroscopy techniques, reducing their measurement
time by a factor of 6 [1]. This improvement maymake a new
range of condensed-matter experiments more broadly
accessible. It could also bring cutting-edge optical technologies
closer to industrial applications, especially in the field of
product quality control.

Spectroscopic characterization techniques possess an intrinsic
trade-off between data-acquisition speed andmeasurement
sensitivity. Repeating measurements reduces experimental
noise and increases accuracy through an averaging process, but
more time is then required to collect a full dataset. There are
two complementary approaches to address this challenge: a
“hardware” approach, which focuses on improving the
experimental equipment by, for example, increasing detector
sensitivity, boosting signal emission, or reducing environmental
noise; and a “software” approach, in which data acquisition is
accelerated by means of signal-processing tools. As a
mathematical algorithm for fitting and reconstructing
experimental data, CS falls into this latter category. Developed

in the 1990s and 2000s [2–4], the approach is often associated
with the fields of nuclear magnetic resonance (NMR) and spatial
imaging, where it was first deployed [4–7]. But the concept can
be applied to virtually any experimental signal.

CS involves reconstructing a signal from a randomly (and
drastically) downsampled dataset. In comparison to standard
methods of data collection, therefore, CS saves lab time by
allowing experimentalists to rely on fewer sampled data points
while achieving the same resolution. It is not quite a free lunch
though—themeasured signal must obey an important
condition: that it is sparse when transformed into another
known basis. For instance, a signal that at first appears complex
might, when transformed into another basis, turn out to be
dominated by just a small number of select frequencies (Fig. 1).
Such a signal is sparse in the frequency domain and can be
efficiently analyzed with CS. This condition may seem
restrictive, but it is fulfilled by many signals.

As Adhikari and colleagues show, the ability of CS to make do
with fewer data points makes the technique particularly well
suited to multidimensional measurements. Obtaining such
measurements using a conventional signal-processing method
would usually involve scanning over the full parameter space in
every variable. By downsampling this parameter space for each
variable, CS allows these measurements to be made with
significant data-acquisition-rate benefits [1, 4–8]. This
efficiency improvement has the added advantage that samples
are less prone to degradation from long exposure to the probe.
In the case of characterization techniques that use beams of
electrons or ionizing photons, somematerials cannot withstand
the high dose associated with a long averaging time [6]. CS
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Figure 1: Schematic application of compressive sensing to THz
time-domain spectroscopy. (Top left) A terahertz pulse is incident
on a sample. (Top right) The pulse is shown after traveling through
the sample with a trailing oscillatory tail indicating the presence of
molecular resonances. (Bottom) The resulting signal is composed
of three different peaks, giving a sparse frequency-domain
representation.
Credit: J.-M. Ménard/University of Ottawa; adapted by APS/Alan
Stonebraker

thereby helps to overcome limitations related to both sample
throughput andmeasurement stability.

Adhikari and colleagues demonstrate this advantage by using
CS to reduce, by a factor of 6, the data acquisition for two
optical pump-probe experiments: ultrafast transient absorption
spectroscopy and ultrafast terahertz (THz) spectroscopy [1]. In
both experiments, data acquisition takes place over two
dimensions. In other words, data are collected while varying
two independent experimental parameters such as the time
interval between optical pulses and the optical wavelength.
The team’s first step is to randomly downsample this
measurement space. They do this at different sampling
fractions to verify the integrity of the reconstruction for various
amounts of data. They also present a strategy to validate the

reconstruction process as more data are added. This validation
would be achieved by repeating the CS reconstruction for each
new data point until the error between consecutive
reconstructions falls below a certain threshold.

Experimentalists looking to replicate the team’s approach with
other characterization techniques will be glad to know that they
do not have to start from scratch. Code packages and
demonstrations are notably available for Matlab [5] and Python
[9], with the small caveat that they will need to be adapted to
each type of measurement by integrating the numerical tools
into the instrumental automation aspect, selecting a correct
sparse basis transformation, and defining appropriate stopping
criteria.

After the success of CS in applications such as NMR [5],
single-pixel imaging [4], and quantum chemistry [8], we expect
this new demonstration to raise the technique’s profile within
the broad ultrafast-spectroscopy community. Longer term,
machine learning and CS could be combined synergistically [7]
to automate the process of deducing the ideal transformation
that delivers the necessary sparse bases for the CS algorithm.

Despite the potential of CS to improve the efficiency of ultrafast
spectroscopy, researchers should bear in mind a significant
limitation: CSmay not performwell if the signal is not actually
sparse. Nevertheless, we imagine that this technique could be a
natural match to spectroscopy applications that seek to
investigate and quantify spectral resonances in materials. We
expect that “software-like” advances will gain ground,
especially in industry, where they may be crucial to the
implementation of ultrafast techniques for product
characterization.
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