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Driving Transport with High
Disorder
A study of long-range interactions in disordered systems yields a
surprising result: Transport can increase with disorder.

ByHoracio M. Pastawski

T he physicist Philip Anderson introduced the
concept of quantum localization in 1958 to explain why
diffusion is not observed for spin excitations in impure

semiconductors [1]. Localization is a quantum phase transition
in which coherent backscattering at disorder centers induces
interference effects in—depending on the situation—electrons,
spins, phonons, or other quantum excitations. The resulting
suppression of transport is especially prevalent in 1D systems
[2], which is why researchers working with nanowires are
interested in overcoming Anderson localization. A new
theoretical study by Nahum Chávez from the Meritorious

Figure 1: A disordered systemwith long-range hopping is depicted
as a set of N = 7 orbitals (green) in a star configuration (left). The
disorder (W) is depicted in the random size of the orbitals, while
nearest neighbor hopping (Ω) and long-range, all-to-all hopping
(γ/2) are shown, respectively, with red and blue connections. The
resulting excited band is separated from the ground state by an
energy gap ∆ = Nγ/2 (middle). The current through the system is
plotted against the disorder on a log-log scale (right). Different
regimes are evident: Anderson localization, disorder-enhanced
transport (DET), and disorder-independent transport (DIT).
Credit: APS/Alan Stonebraker

Autonomous University of Puebla (BUAP), Mexico, and
colleagues explores the addition of long-range “hopping”
interactions in a 1D disordered system [3]. Their computations
of the current through the system show that for weak disorder,
Anderson localization shows up roughly as usual, in that
disorder hinders transport. The surprise appears when the
disorder exceeds a certain value. Then the current shows a
notable increase with the disorder, eventually reaching a
plateau before it starts to decrease again. Future experiments
with trapped atoms in optical lattices and Bose-Einstein
condensates (BECs) could probe this predicted
hopping-induced delocalization.

The long-range hopping interaction that Chávez and colleagues
consider can appear in a variety of instances. An example is a
chain of molecules in an optical cavity, where an excitation in
onemolecule can jump to a distant molecule in the chain
through a cavity coupling. The theorist Ugo Fano pointed out
that long-range, all-to-all interactions are the source of
plasmonic oscillations and superconductivity [4]. In the latter
case, it is the phonon-mediated, all-to-all interactions between
Cooper pairs at the Fermi surface that are responsible for
generating the collective superconducting ground state [5]. In
the case considered by Chávez and collegues, a similar ground
state occurs, but it is separated from the excited states by a
large energy gap. Onemight assume that the delocalized
ground state is “buried” under this gap, unable to mitigate the
localization of the excited states. But in a loose metaphor, we
can say the ground state rises like a “phantom” to extend the
transport probability of the excited states.

To understand this delocalization, we can consider a generic
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model of excitations, or “excitons.” Under reasonable
approximations, the dynamics of excitons is described by a
linear chain of N “orbitals” with Anderson disorder. An exciton
can occupy one of these orbitals or hop to a nearest-neighbor
orbital with a tunneling rate characterized by an energy term Ω.
Each orbital has an on-site energy drawn from a random
distribution of width W that defines the disorder and
discourages the hopping. The excited states have localized
wave functions, each of which peaks at a different orbital
position and falls exponentially with distance from that peak
position. The larger the disorder, the steeper the exponential
tails, and the less likely that an excitation can hop to a nearby
orbital.

To this generic model, Chávez and co-workers introduce a
superimposed effective all-to-all hopping with characteristic
energy γ/2. My student and I previously visualized this type of
all-to-all hopping with a “star system” [6], where the ground
state Ψ0, with energy (1 − N)γ/2, is the fully symmetric
superposition of all orbitals, while the N − 1 excited states form
a band at energy γ/2 (Fig. 1). One might naively think that
these (localized) excited states would be safely decoupled from
the (delocalized) ground state by the large energy gap of
∆ = Nγ/2. Indeed, localization occurs “almost” as prescribed
by Anderson, but the long-range hopping causes the excited
states to take on a hybrid character that mixes localized and
delocalized states. To understand this hybridization, imagine an
N-star systemwith collective ground state Ψ0, and then add an
extra orbital with a localized wave function ΨN . The new
ground state of the systemwill be approximated by the
“bonding” hybrid Ψ0 + ΨN/

√
N, while the “almost” local

excitation is ΨN − Ψ0/
√

N. Thus, the strong correlations that
constitute the ground state also impose a very weak but
unavoidable delocalized floor to each of the excited states.
Returning to our metaphor, residual ground states of smaller
systems appear as a flat, noisy “phantom” background that can
overcome the exponential tails at the extremes of the localized
wave functions.

Chávez and colleagues explore this effect by computing the rate
of transport, or current, as the disorder is increased. For low
disorder, the wave functions are dominated by their relatively
broad exponential tails, and the current decreases as disorder
increases (Anderson localization). But when the disorder
reaches a value of W1, the extremes of the exponential tails

plunge under to the “phantom” background. In this
disorder-enhanced transport (DET) regime, the wave functions
becomemore spatially extended (more prone to hopping) as
the disorder increases. At a higher disorder value of W2, the
localization length reaches one lattice unit, and a
disorder-independent transport (DIT) occurs exclusively
through the “phantom” background. Finally, at disorder above
WGAP, the energy gap is closed, and transport again diminishes
with increasing disorder.

Since the observables that characterize transport, such as
currents, decrease as 1/N2, the delocalization phenomenon
might be difficult to tease out of experiments with large N
systems. However, there are ways in which the “residual”
character of the effect could become observable. On one hand,
experiments that try to incorporate long-range couplings in
synthetic systems, such as trapped atoms in optical lattices and
BECs, have relatively small N. On the other hand, if the all-to-all
coupling term becomes reduced to a finite length scale, this
scale would break a big system into a sequence of small-N
pieces that behave as the describedmodel does. A similar
situation may occur in the presence of weakmany-body
interactions [7]. Since these interactions could be seen as a
source of decoherent processes, they would impose a finite
coherence length that also breaks the system into pieces with
that length [8]. One might also wonder about the effect of
long-range couplings in more flexible models of disorder, such
as incommensurate potentials that have been implemented
experimentally to explore the interplay between localization
andmany-body effects [9]. Indeed, however weak, the
“phantoms” resulting from the ubiquitous collective ground
state might still have further unforeseen effects beyond those
reported in this paper.
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