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QuantumMachine Learning for
Data Classification
Quantummachine-learning techniques speed up the task of classifying
data delivered by a small network of quantum sensors.

By Seth Lloyd

Q uantum technologies are growing at great pace, driven
by the interplay between academia, government,
startups, and large companies such as Google, IBM,

Microsoft, and Amazon. Quantum communication systems,
including quantum cryptographic networks, have already been
deployed on large scales; quantummetrology schemes, such as
atomic clocks, offer the state of the art for high-precision
measurements; and quantum computers are entering an early
industrial era. Yet the “quantum jungle” of available devices
and protocols remains hard to navigate, and researchers still
need to work on identifying the most promising paths to

Figure 1: Artistic rendition of the quantum-enhanced classification
of data from a network of entangled sensors. The work of Zhang,
Zhuang, and co-workers suggests that this quantum
machine-learning approach holds promise to benefit real-world
data-classification applications.
Credit: Sondii Media

quantum technologies that can be societally useful. Now, a
collaboration between two teams at the University of
Arizona—led by Zheshen Zhang and by Quntao Zhuang,
respectively—shows that quantum entanglement can provide a
quantifiable advantage to data classification, a task relevant for
imaging and navigation [1]. Using a machine-learning
algorithm, the team classifies data from a network of entangled
sensors (Fig. 1). By comparing their scheme with one using
classical data processing, they show that entanglement can
boost both the accuracy and the speed of classification. The
work paves the way for a broad range of quantum-enhanced
classification methods that could be enabled by near-future
quantum technologies.

There are good reasons to be optimistic about the future of
quantum computers. But building a universal, fault-tolerant
quantum computer—one that can correct errors deriving from
imperfections in its operations or from environmental
disturbances—is a daunting task. Fault-tolerant quantum
computers that can be scaled up to solve meaningful problems
are a decade away (plus or minus infinity, given the incertitude
inherent in such predictions). In the meantime, however, the
field of quantum simulation is forging ahead. Devices known as
variational quantum eigensolvers are showing promise for
solving hard problems in quantum chemistry [2, 3] and for
performing data-classification tasks [4]. The power of these
quantum devices can be further boosted by incorporating
techniques borrowed from the emerging field of machine
learning. But can this potential be realized with the quantum
hardware that will be available in the near term, that is, noisy,
intermediate-scale quantum (NISQ) devices [5]? And can
quantummachine-learning algorithms provide a true
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advantage over the powerful, classical machine-learning
methods that are already available?

The work of Zhang, Zhuang, and co-workers explores a route for
quantum-enhanced data processing that derives from the
marriage of quantummachine learning with the most
established quantum technologies: quantum sensing and
metrology. A well-known example of such technologies is the
quantum logic clock first developed by Nobel laureate David
Wineland and colleagues [6]. Using methods of quantum
computation, including the manipulation of entanglement, this
type of clock achieves unprecedented precision in the
measurement of time— it is, by many criteria, the most accurate
measurement instrument ever constructed by humans. Related
techniques have advancedmeasurements of other quantities
(electric andmagnetic fields, mass, acceleration, andmore),
approaching precision levels close to the ultimate limits set by
the laws of quantummechanics.

Combining techniques from themature field of quantum
metrology with techniques from quantum computing is thus
especially promising. Recent theoretical and experimental work
has shown the potential of using quantummachine-learning
techniques to directly process “quantum data” acquired by
quantummeasurement and sensing devices, optimizing tasks
such as measurement, discrimination, and data classification.
Such direct processing has advantages compared with
processing classical data using quantum techniques, which
requires an interface called a quantum random access memory
(qRAM), which loads classical data into a quantum computer
[7]. This technology, however, is still in its infancy.

The work of Zhang’s and Zhuang’s teams focuses on a
particularly intriguing case—a network of quantum sensors.
The use of quantum information processing techniques to
combine and analyze the quantum outputs of multiple sensors
holds tremendous promise for realizing a quantum advantage.
The potential gain stems from a fundamental feature of
quantummetrology: The advantage provided by the coherent
processing of sensor data scales as the square root of the
dimension of the so-called Hilbert space that represents the
quantum states sensed by the network. Since the dimension of
that Hilbert space scales exponentially with the number of
analyzed states, the quantum advantage for a quantum sensor
network scales exponentially with the number of sensors.

The teams perform the first experimental study that applies
quantummachine learning to quantum sensor networks,
providing a compelling indication of a quantum advantage. The
authors construct a sensor network that generates entangled
states and encodes such states in radio-frequency signals. They
then design a quantum protocol to classify these signals based
on certain features of their amplitude-phase relationship. Such
a protocol, dubbed supervised learning, assisted by an
entangled quantum network uses techniques of variational
optimization (analogous to the training of a deep neural
network) to identify an optimal quantummeasurement for
analyzing the states and classifying the quantum data.

The authors investigate a framework that may be generalized to
data-classification problems in many other physical domains.
They analyze an experimental configuration in which a classical
signal generates a quantum state in the quantum sensors. They
then compare the optimal signal-discriminating measurements
for two cases. In the first, the states generated by the quantum
sensors are measured individually, and the results of the
measurements are processed classically. In the second, the
states generated by the sensors are processed by a quantum
network that performs entangling operations between the
states generated by different sensors. In both cases, the
measurements are optimized by variational techniques to
minimize the classification error using the established support
vector machines (SVM) method. SVM classifies data on the
quantum states by finding optimal “hyperplanes” that separate
the states in a vector space. The researchers find that the
quantum SVM provides a significant reduction in the error rate
of classification compared with the error rate achieved with a
classical SVM.

This first experimental demonstration is performed with just
three quantum sensors—a tiny “quantum step” for the tiny
“quantum feet” offered by current technologies. But the
method can readily be extended to higher numbers of sensors
and, given the exponential scaling, holds the promise of
dramatically enhancing the power of large sensor networks.
Importantly, such enhancement can be obtained with quantum
information processors containing hundreds or thousands of
quantum logic gates—those that might be available in the near
term.

Zhang, Zhuang, and co-workers chose to explore the quantum
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jungle by following a path that runs at the border between
quantum sensing and quantummachine learning. The
beautiful “quantum fruits” they discovered along the way show
that this path deserves further exploration.

Seth Lloyd: Massachusetts Institute of Technology, Cambridge, MA,
USA
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