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Taking Smooth Steps Toward

Equilibrium

By combining continuous and discrete theoretical approaches,

researchers show how to plot an optimal path from one nonequilibrium

quantum state to another.

By Varun Narasimhachar and Felix Binder

o physical system is truly isolated. Even when a system

is left “untouched,” interactions with its environment

will affect its state and generically drive it toward
thermal equilibrium, as encapsulated by the classical laws of

*p

Figure 1: The mathematical condition called thermomajorization
indicates that there exists a thermal process that can change the
state of the system from p to g. But the condition doesn’t indicate
what the state-change process might look like in time. For the case
of a “forgetful” thermal process, Korzekwa and Lostaglio’s
continuous thermomajorization supplements this condition by
providing an explicit recipe for the state-change process, which
comprises a continuous sequence of small thermal processes,
indicated here by arrows [1, 2].

Credit: M. Lostaglio and K. Korzekwa [2]; adapted by APS/Alan
Stonebraker

thermodynamics. How exactly this “thermalization” occurs in
complex systems remains an active area of research; what is
clear is that thermalization as a dynamical process is
ubiquitous. In a new theoretical study, Matteo Lostaglio at the
University of Amsterdam and the Delft University of Technology,
Netherlands, and Kamil Korzekwa at Jagiellonian University,
Krakow, Poland, take this fact as a starting point to explore what
happens to small systems en route to thermalization [1, 2].
Focusing on the regime in which a system interacts weakly with
a large environment, Lostaglio and Korzekwa offer three
findings: a complete set of constraints that all thermalization
processes need to fulfill; a decomposition of a thermalization
process into elementary components; and an algorithm that
outputs a recipe for achieving any desired thermalizing
transformation by piecing together these elements. The results
could show physicists the optimal thermalizing paths between
one thermodynamic state and another—a useful ingredient in
heat engines and other applications.

The earliest theoretical developments in thermodynamics
uncovered the classical zeroth, first, second, and third laws,
which sketched out certain basic features of the physical world
that distinguish macroscopic thermodynamic phenomena from
the microscopic motion and interaction of particles and fields.
These features include the concepts of heat and thermal
equilibrium as well as the increase of entropy (or disorder),
which were vital to figuring out what levers of control were
available for achieving a particular desired state. More recently,
researchers have developed more fine-grained and
sophisticated descriptions for quantum thermodynamics with a
particular focus on small quantum systems (see, for example,
Ref. [3]).
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A prominent treatment of thermodynamics describes the
continuous evolution of a quantum system over time using a
type of differential equation called a master equation [4]. An
alternative approach, called thermal operations, abstracts away
the continuity aspect and instead models processes as discrete
transformations between two points in time [5, 6]. These
operations can be engineered to achieve certain goals—such as
optimizing the performance of a quantum-scale engine or
refrigerator—by bringing a physical system in contact with a
heat bath (a large system that maintains its own internal
temperature) and making the two interact in carefully chosen
ways. The resulting processes include thermalization—the
system reaching thermal equilibrium with the bath—but also a
rich variety of other possibilities, such as the counterintuitive
outcomes that only quantum systems can produce. One may
imagine all these possibilities as approaches to thermalization
via any of a diverse collection of paths.

While this discrete model has an advantage over the continuous
approach in that its solutions are more general, the
system-environment interactions necessary to change a system
from one state to another can be complex and difficult to
determine. (Here, “state” refers to the collection of energy-level
populations of a quantum system, that is, the probabilities with
which it can be found in various levels.) Subsequent work has
identified precise mathematical conditions—called
thermomajorization—for thermal operations to be feasible in
different contexts [6-9]. However, these conditions reveal little
about how to implement such transformations.

The central contribution of Lostaglio and Korzekwa is providing
a connection between the time-continuous and
discrete-operational descriptions for a system weakly coupled
to a large thermal environment. They also derive a family of
entropy-production inequalities that supplant the standard
second law by a more fine-grained requirement. The duo focus
on a class of continuous processes where the system interacts
with a thermal environment that is “forgetful”: the environment
(initially in equilibrium) has a brief energy exchange with the
system and then instantaneously relaxes back to equilibrium
before its next exchange with the system. Mathematically, such
processes are described by so-called Markovian master
equations.

Lostaglio and Korzekwa identify a version of
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thermomajorization that is compatible with such a continuous
treatment, determining which pairs of states can be connected
by feasible continuous Markovian processes. They provide
efficient algorithmic methods to check this relation for any
given pair of states, to chart out all the final states reachable
from a given initial state, and to explicitly construct for each
feasible pair a connecting process comprising a sequence of
particularly simple operations called elementary
thermalizations. Each of these basic steps consists of partially
thermalizing two energy levels of the system at a time (Fig. 1)
[10]. In addition to involving only two-level interactions, these
operations are also more direct than general thermal
operations, which can take the system on circuitous routes
toward equilibrium. These properties make elementary
thermalizations amenable to efficient numerical optimization.

Going forward, it is worth noting that thermodynamics is
ultimately a theory of control, describing what type of
transformations nature allows when we have access only to
macroscopic control variables. The picture described here so
far is of a passive nature: it describes systems left to their own
devices. The permitted control is limited to connecting and
disconnecting parts of the system to the environment’s
thermalizing influence. Ultimately, a more general modular
theory could describe a larger set of elementary operations that
are amenable to a continuous treatment but not limited to
partial thermalization; some progress in this direction has
already been achieved [11].

The appeal of Lostaglio and Korzekwa’s model lies in its explicit
incorporation of time-continuous dynamics and its focus on
modular operations. Thermalization features in
thermodynamic protocols across the board, be they simplified
theoretical toy models for information erasure, in the context of
Landauer’s principle, or thermodynamic engine cycles [12].
Being able to modularize this ubiquitous process for small
quantum systems is thus a valuable step forward. Besides the
obvious question of including true “quantumness” in the
description (in the form of quantum superposition between
energy levels), it would also be interesting to see if a similar
modaularization can be applied when multiple heat baths are
present at the same time but active control is still absent, as is
the case for systems that support nonequilibrium steady states.
Such explorations may pave the way toward incorporating the
full power of general, non-Markovian processes in a continuous,
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modular description.
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