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Machine-Learning Model
Reveals Protein-Folding Physics
An algorithm that already predicts how proteins fold might also shed light
on the physical principles that dictate this folding.

By Armita Nourmohammad,Michael Pun, and Gian Marco Visani

P roteins control every cell-level aspect of life, from
immunity to brain activity. They are encoded by long
sequences of compounds called amino acids that fold

into large, complex 3D structures. Computational algorithms
canmodel the physical amino-acid interactions that drive this
folding [1]. But determining the resulting protein structures has
remained challenging. In a recent breakthrough, a
machine-learning model called AlphaFold [2] predicted the 3D

Figure 1: Roney and Ovchinnikov have proposed amechanism by
which the machine-learning model AlphaFold predicts the 3D
structure of a protein from a given amino-acid sequence [3].
AlphaFold uses information onmultiple sequence alignments
(MSAs) in the amino-acid sequences of different biological species
(each color represents a different amino acid). The researchers
suggest that this MSA information directs AlphaFold to a particular
starting point on the energy landscape of protein folding—a graph
of the energy associated with all possible 3D configurations of a
given sequence. AlphaFold then searches locally for the
lowest-energy configuration, which corresponds to the likely 3D
protein structure.
Credit: APS/Carin Cain

structure of proteins from their amino-acid sequences. Now
James Roney and Sergey Ovchinnikov of Harvard University
have shown that AlphaFold has learned how to predict protein
folding in a way that reflects the underlying physical amino-acid
interactions [3]. This finding suggests that machine learning
could guide the understanding of physical processes too
complex to be accurately modeled from first principles.

Predicting the 3D structure of a specific protein is difficult
because of the sheer number of ways in which the amino-acid
sequence could fold. AlphaFold can start its computational
search for the likely structure from a template (a known
structure for similar proteins). Alternatively, andmore
commonly, AlphaFold can use information about the biological
evolution of amino-acid sequences in the same protein family
(proteins with similar functions that likely have comparable
folds). This information is helpful because consistent correlated
evolutionary changes in pairs of amino acids can indicate that
these amino acids directly interact, even though they may be
far in sequence from each other [4, 5]. Such information can be
extracted from themultiple sequence alignments (MSAs) of
protein families, determined from, for example, evolutionary
variations of sequences across different biological species.
However, this reliance on MSAs is restrictive because such
evolutionary knowledge is not available for all proteins.

Roney and Ovchinnikov hypothesize that the protein-folding
model inferred by AlphaFold goes beyond MSA information
(Fig. 1). They argue that this information only guides AlphaFold
to a specific starting point on the energy landscape of protein
folding—amap between the different 3D configurations of a
given amino-acid sequence and their associated energies.
Then, AlphaFold uses an “effective energy potential” that it has
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learned to locally search the energy landscape for the
lowest-energy configuration, which corresponds to the likely 3D
protein structure. The team tested this hypothesis using several
computational experiments, in which AlphaFold ranked the
quality of candidate protein structures that had previously been
computationally predicted for different amino-acid sequences.
AlphaFold was able to accurately rank the quality of the
candidate structures in a way that was consistent with physical
protein-folding models and that did not rely on any
evolutionary information. These results indicate that the
researchers’ hypothesis is likely correct.

The energy potential for protein folding learned by AlphaFold
could open paths to exciting applications. Roney and
Ovchinnikov suggest using the potential more broadly, for
example, to explore how to fold de novo proteins (those
designed in the lab from scratch) that lack MSA information or
templates. Further investigation of the effective physical model
uncovered by AlphaFold could reveal how amino-acid
sequences spontaneously fold into their 3D structures inside
cells. Moreover, the energy potential could be used to design
sequences that fold into desired protein structures. Indeed,
related machine-learning methods [6, 7] have already shown
promise in designing viable sequences with desired folds for de
novo proteins. It remains to be seen whether these methods
implicitly leverage information about the underlying physics in
their protein design process.

In the past few years, machine learning has revolutionized
many aspects of protein science. AlphaFold is a success story in
protein folding. Other kinds of machine-learning models that
were originally designed to characterize the distributions of
words in human languages have determined functional motifs
in amino-acid sequences [8, 9]. The fact that AlphaFold has
learned an energy potential, without specifically being trained
to do so, indicates that efficient machine-learning algorithms
can uncover key information about the physical interactions
within molecules. Consistently, other types of efficient
machine-learning algorithms that are trained to characterize
protein structure-to-function maps have implicitly uncovered
physical models for interatomic interactions [10].

The success of Roney and Ovchinnikov in constructing an
energy potential from the predictions of AlphaFold reinforces
the need to developmachine-learning models that are

amenable to physical interpretation. This feature could also
lead to more generalizability: if the implicitly learned physical
laws could bemade explicit, they could be used to solve
problems beyond what the machine-learning models were
originally trained to do. For protein science, it is certainly
desirable for the next generation of machine-learning models to
be physically interpretable.
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