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A Quantum Solution to an
18th-Century Puzzle
Amathematical problemwith no classical solution turns out to be
solvable using quantum rules.

By Philip Ball

A sudoku-style mathematical puzzle that is known to
have no classical solution has been found to be soluble if
the objects being arrayed in a square grid show quantum

behavior [1]. The problem, posed by Swiss mathematician
Leonard Euler in 1779, involves finding a way to arrange objects
in a grid so that their properties don’t repeat in any row or
column. The quantum solution might be useful for problems in
quantum information processing, such as creating algorithms
for correcting errors in quantum computing.

Euler imagined a group of 36 army officers, six from each of six
regiments, with each officer having one of six different ranks.
Can they be arranged in a square formation such that no

On a roll. Quantum dice can be entangled such that the outcomes
of any two for a roll are correlated with the outcomes for the other
two. The existence of a special state called the absolutely
maximally entangled state has been unclear for four such dice, but
a new study shows how to construct such a state—with possible
implications for quantum information processing.
Credit: S. A. Rather et al. [1]

regiment or rank is repeated in any row or column?

Solutions can be found for all squares (3 × 3, 4 × 4, and so on,
assuming the appropriate number of officers) except for 2 × 2
and Euler’s case of 6 × 6. In 1900, the impossibility of a 6 × 6
solution was proven by the Frenchmathematician Gaston Tarry.
But Suhail Rather of the Indian Institute of Technology Madras
(IITM), Adam Burchardt of Jagiellonian University in Poland,
and their colleagues wondered if the problem could be solved if
the objects were quantummechanical instead of classical.
Then the objects could be placed in combinations
(superpositions) of the various possible states: a single officer
could be, say, partially a colonel from the red regiment and
partially a lieutenant from the blue regiment.

This quantum version requires an adjusted definition of when
two such states can be considered “different.” Quantum
superpositions can be represented as vectors in the space of
possible states of the components, and the team assumed that
two superpositions are mutually exclusive if their vectors are
perpendicular (orthogonal) to one another.

The researchers used a computer algorithm to search for such
quantum solutions of Euler’s “36 officers” problem. They
started from a classical configuration that had only a few
repetitions in the rows and columns and tried to improve it by
adding in superposition. They found that a full quantum
solution to the 6 × 6 problem exists for a particular set of
superposition states.

A superposition between two quantum objects often implies
that they are entangled: their properties are interdependent
and correlated. If, say, one quantum officer is found (on
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Error-prone. Correcting errors in quantum computers, like this
one made by IBM, is not easy. But one approach involves putting
the quantum bits into so-called “absolutely maximally entangled”
quantum states. The quantum solution of Euler’s 36 officers
problem shows a novel way of making such states.
Credit: IBM

inspection) to be a colonel, the other with which it is entangled
might have to be a lieutenant. The quantum solution requires a
complicated set of entanglements between officers,
reminiscent of the entanglements created between quantum
bits (qubits) in quantum computing.

The researchers realized that their solution is closely related to
a problem in quantum information processing involving
“absolutely maximally entangled” (AME) states, in which the
correlation between any pair of entangled qubits in the group is
as strong as it can possibly be. Such states are relevant to
quantum error correction, where errors in a quantum
computation must be identified and corrected without actually

reading out the states of the qubits. AME states are also
important in quantum teleportation, where the quantum state
of one particle in an entangled pair is recreated in the other
particle.

Qubits have two possible readout states, 0 and 1, but quantum
objects can, in principle, also have three (qutrits) or more
states. Theorists have derivedmathematical expressions for
AME states for different-sized groups of quantum objects, but an
AME state for four six-state objects (so-called quhex objects, like
quantum dice) has proven curiously elusive. Rather and
colleagues found that their quantum solution to the 6 × 6 Euler
problem shows how to entangle four quantum dice to also
produce this so-called AME(4,6) solution. The lack of an
AME(4,6) state had been puzzling to theorists, but the solution
required an approach that had not been previously considered.
The result shows a new design principle for creating states with
entangled particles, an essential element of error-correcting
codes, says teammember Arul Lakshminarayan of the IITM.

Finding the AME(4,6) state solves “a problem that has been
investigated by several researchers within the last few years,”
says quantum information theorist Barbara Kraus of the
University of Innsbruck in Austria. Quantum technologist
Hoi-Kwong Lo of the University of Toronto says the work is
potentially significant. “The argument looks plausible to me,
and if the result is correct, I think it is very important, with
implications for quantum error correction.” But he admits that
it’s not easy to understand intuitively why the six-state case
turns out to be so special, both for Euler’s problem and for the
AME states.

Philip Ball is a freelance science writer in London. His latest book
is The Modern Myths (University of Chicago Press, 2021).
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