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In the Brain, Function Follows
Form
Interpretingmagnetic resonance images in the context of network control
theory, researchers seek to explain the brain’s dynamics in terms of its
structure, information content, and energetics.

By Steven Schiff

D eveloping a physics for the brain is a daunting task that
has obsessed scientists since large-scale brain-activity
measurements became available half a century ago.

Advances in such techniques are spurring swift progress in the
field. Magnetic resonance imaging (MRI), in particular, offers
two extremely valuable types of data. First, a variant of MRI
called diffusion tensor imaging (DTI) provides a way to
construct a map of the major connections of the brain—the
brain’s physical “wiring” (Fig. 1). Second, functional MRI (fMRI)
canmeasure where in the brain activity has just taken place by
observing what is termed the blood-oxygen-level-dependent
(BOLD) signal. Leon Weninger at the University of Pennsylvania
and his colleagues have now combined these methods with
tools from network control theory to describe brain dynamics in

Figure 1: A diffusion tensor image (DTI) showing some of the major
connections of the brain.
Credit: USC Mark and Mary Stevens Neuroimaging and
Informatics Institute (www.ini.usc.edu)

terms of the information content of specific patterns of brain
activity or “brain states,” and of the energy cost of transitions
between such states [1]. The paper offers compelling new
strategies, derived from physics, to interpret brain structure and
function.

The structure and activity measurements afforded by DTI and
BOLD fMRI allow scientists to analyze two basic properties of
the brain. First of all, to function properly, the brain has
presumably to observe itself: Parts of the brain have to be able
to estimate the state of other parts of the brain in order to
reconstruct what is going on both within and outside the brain.
The analog in control engineering is that parts of the brain must
be observable. The brain also needs to control portions of itself
in order to read this article, generate speech andmotor
functions, and try hard to retrieve memories [2]. Rudolf Kalman
first defined the concepts of observability and controllability of
linear systems in 1960 [3]. In 1974, Ching-Tai Lin expanded
Kalman’s theory to account for what topologies of networks are
structurally controllable—asking how the absence of
connections in portions of a network would render it
uncontrollable in Kalman’s sense [4]. But brains are floridly
nonlinear and establishing observability and controllability for
complex nonlinear networks is muchmore difficult than it is for
linear systems [5]. Analyzing nonlinear observability and
controllability require the use of more complex mathematics
such as Lie derivatives and brackets, as well as the introduction
of group theoretic concepts, since symmetries can destroy
observability and controllability in fascinating ways [6].

Weninger and his colleagues investigate brain-activity-state
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controllability by asking a set of fundamental questions relating
connectivity-constrained state transitions to other brain states.
They characterize a given state through ameasure of
information (how probable the state is to be observed within
the ensemble of brain regions), and they use a fundamental
result derived from Kalman’s work to establish whether a
network’s connectivity renders it controllable. Specifically, they
employ a controllability Gramianmatrix that combines the
relationship between network topology and control input. Such
controllability provides critical constraints on the brain’s state
transitions.

The scope and audaciousness of this project are mind boggling.
The team applies their approach to a massive dataset from the
Human Connectome Project [7]. They subdivide the brain
regions from fMRI scans into activity parcels, and they quantify
the Shannon information in the ensemble of parcels according
to the inverse of the probability of achieving a given state
during rest versus during the performance of a set of cognitive
tasks. States with high information content are those that are
statistically rare during rest. The researchers then calculate the
energy required to transition from one state to another. They
report several main findings: (1) the information content
depends upon cognitive context (compared to motor tasks,
social tasks are very challenging!); (2) the energy required to
transition to high-information (rare) states is greater than that
required to transition between low-information (common)
states; and (3) the state transitions show that brain wiring is
optimized to render this dynamical system efficient. The
average controllability was found to correlate with the ease of
transitioning to high-information states.

Many questions that go beyond the scope of the study are worth
bringing up for those who wish to think more about this
characterization of thought processes. For example, do the
high-energy transitions to high-information states reflect
cognitive effort? Surely, while writing this article, my brain is
engaged in tasks more complex than what we would expect
from a statistical ensemble of elements in a Boltzmann-like
distribution of energy states. But could we use such an
information-control theoretic description of brain activity and
mental effort to shed new light on cognitive dysfunction and
mental health? An information-based dynamic biomarker for
cognitive disorders would be very useful if it were to emerge
from such a framework.

One should bear in mind some of the study’s limitations,
however. One such limitation relates to the detailed mechanics
behind the brain’s energy balance. The brain is an open system
that consumes about 20% of the body’s resting metabolic
energy. Most of that energy is dedicated to reestablishing ion
gradients across nerve cells and repackaging neural
transmitters after activity [8]. During activity, that stored energy
is dissipated almost instantly (in milliseconds); the brain then
recharges such energy stores more slowly (in seconds). The
BOLD fMRI signal reflects this slower replenishment, not the
rapid dissipation that occurs during brain activity. It is not
knownwhether the energy required to reach a high-information
state is stored independently of the improbability of reaching
that state through stochastic or resting activity.

Another limitation arises from themaximum spatial resolution
that is currently possible in MRI: both the BOLD signal and DTI
pathways measure local regions of interest much larger than
individual neurons. There is, therefore, a tremendous amount
of subgrid physics going on in the brain that is not captured by
these measures. Furthermore, much of the brain’s connectivity
is very much one-way for a given nerve fiber or bundle—there is
no reversibility or detailed balance in these ensemble
dynamics. And a key hallmark of cognitive function is
synchronization [9], which is typically measured electrically; yet
synchrony implies symmetries in networks, and such symmetry
can destroy controllability [10].

The work by Weninger and colleagues offers compelling new
strategies to investigate brain dynamics and cognitive states
and will surely lead to other fascinating questions in our minds
about this most complex of organs.

Steven Schiff: Yale School of Medicine, Yale University
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