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Active Particles Push the
Boundaries of Two-Dimensional
Solids
Active particles can form two-dimensional solids that are different from
those formed by nonmotile particles, showing long-range crystalline
order accompanied by giant spontaneous deformations.

ByMathias Casiulis

I f you compress a liquid slowly enough at low temperatures,
it will freeze into an ordered solid: a crystal. Or at least
that’s what we’re used to seeing in three dimensions. If you

instead consider particles confined to a two-dimensional (2D)
plane, the outcome is quite different. For equilibrium systems,
a 2D solid stabilizes into a structure that lacks long-range
order—it becomes less ordered further away from a central
lattice site. The behavior of systems far from equilibrium, such

Figure 1: (Left) In equilibrium, a two-dimensional system of
particles stabilizes into an ordered structure that resembles a
crystal lattice, though that order becomes less clearly defined on
longer length scales. (Center) These active systems stabilize into an
ordered solid-like phase but with extremely large fluctuations
around a perfect crystal lattice, as shown by Shi and co-workers [1].
(Right) Contour lines trace the enormous displacements about the
lattice derived from the team’s numerical simulations.
Displacements can be as large as several of the lattice sites
depicted in the sketch. In the figure, brightness indicates
displacement magnitude and color orientation.
Credit: X.-q. Shi et al. [1]; adapted by APS/Alan Stonebraker

as self-propelled particles, remains, however, an open question.
In a numerical study of bacteria-like particles, Xia-qing Shi of
Soochow University in China and his colleagues now show that
active crystals follow a slightly different set of rules than their
nonmotile counterparts [1]. Like 2D equilibrium crystals, 2D
active systems stabilize into an ordered solid-like phase but
with extremely large particle fluctuations around the
configuration of a perfect crystal lattice. The finding could help
to guide future materials design based on active particles.

A defining feature of crystal structures is their periodicity. They
exhibit long-range order, meaning a regular arrangement of
particles that repeats periodically over the entire crystal. In
equilibrium, 2D solids cannot display true long-range order [2].
Instead, the correlation function of particle position decays with
distance, according to a power law that is captured by the
famous Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young
(BKTHNY) theory [3]. Interestingly, despite their lack of
long-range positional order, these 2D solids still feature true
long-range orientational order: the particles are perfectly
aligned throughout the system. For any system that breaks
time-reversal symmetry, however, established theories cannot
say whether true 2D crystals can be stabilized at all, much less
what this stabilization would look like. This theoretical
challenge is particularly relevant to active matter systems
(those that transform energy into mechanical work at
microscopic scales, such as collections of bacteria or chemically
propelled colloidal particles) when they shift from a fluid to a
dense, solid-like phase [4–7].
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Shi and team now show, numerically and analytically, how
positional and orientational order play out in a 2D active
system. Their study examines a common toy model of active
matter, a system of mutually repulsive particles. The particles
self-propel along a direction defined by their internal polar
axes, which align on the short range with the axes of neighbors
but also fluctuate. The researchers first showed that this system
exhibits a dense, ordered phase, much like an equilibrium solid,
for sufficiently small self-propulsion speed, alignment degree,
and rotational diffusion. Then, they focused their attention on
how this dense phase changes as one tunes various system
parameters.

The team numerically demonstrated that the system displays
quasi-long-range positional order and true long-range
orientational order throughout the volume, much like an
equilibrium solid. However, the twist is that the power-law
exponents describing the positional order cover a very wide
range, predicting values that reach as high as 20, which may
sound shockingly large to someone accustomed to equilibrium
physics. Not only does the usual BKTHNY theory establish an
upper bound of 1/3 for the power-law exponent in 2D
equilibrium solids [3], but also it is highly unusual to see a
critical exponent taking such large values in general. Indeed,
typical critical exponents for correlation length versus
temperature or magnetic order versus temperature are of order
1.

To back up their numerical observations, Shi and his colleagues
devised a simple linear elastic theory describing the
displacement of particles with respect to a perfectly ordered
lattice. To do so, they replaced the equilibrium term that
describes fluctuations as white noise (whose variance is linked
to temperature) with an active term that describes those
fluctuations in terms of varying self-propulsion directions. This
leads to the definition of an “effective active temperature” that
replaces the one used in the BKTHNY power-law expression,
allowing the accepted theory to escape equilibrium limitations.
This effective temperature also helps to explain an intriguing
feature of 2D active solids: their particle positions display very
large spontaneous fluctuations about the positions they’d have
in a perfect crystal. These gigantic spontaneous deformations
are much larger than those occurring in any equilibrium setting.
But, as in a 2D equilibrium crystal, the particles retain true
long-range orientational order.

Shi’s study highlights how being far from equilibrium allows
systems to break rules that we often take for granted. At the
fundamental level, the use of a minimal elastic theory and of an
effective temperature elegantly connects active systems to
equilibrium ones in a way reminiscent of effective temperatures
in glasses [8]. Beyond toy models, this concept could help to
explain the behavior of dense, confined biological systems like
tissues [9].

Onmore practical grounds, a better understanding of the
interplay between order and fluctuations in active solids is
necessary to start integrating active elements into materials
and fabrication processes. For example, macroscopic
mechanical metamaterials could use active elements to
intermittently generate larger amplitudes of deformations
without affecting the material’s integrity [10]. Likewise, in the
context of colloidal materials [11], introducing activity at crucial
steps during preparation could facilitate the self-assembly of a
broader variety of structures.
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