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Toward a Complete Theory of
Crystal Vibrations
A new set of equations captures the dynamical interplay of electrons and
vibrations in crystals and forms a basis for computational studies.

By Jan Berges

A lthough a crystal is a highly ordered structure, it is never
at rest: its atoms are constantly vibrating about their
equilibrium positions—even down to zero temperature.

Such vibrations are called phonons, and their interaction with
the electrons that hold the crystal together is partly responsible
for the crystal’s optical properties, its ability to conduct heat or
electricity, and even its vanishing electrical resistance if it is
superconducting. Predicting, or at least understanding, such
properties requires an accurate description of the interplay of
electrons and phonons. This task is formidable given that the

Figure 1: To a first approximation, the vibrations of a crystal—such
as the commonmineral quartz, shown here—can be understood
using a picture of springs stretched between the crystal’s atoms
(background). But reality is muchmore complex, and a helpful tool
to study such vibrations is the technique of Feynman diagrams,
which graphically describe interaction processes (foreground).
Here, each component of the system is represented by a symbol: an
electron by an arrow, a vibration by a spring, an electron–vibration
coupling by a square, and a Coulomb interaction by a wiggly line.
Credit: J. Berges/University of Bremen

electronic problem alone—assuming that the atomic nuclei
stand still—is already challenging and lacks an exact solution.
Now, based on a long series of earlier milestones, Gianluca
Stefanucci of the Tor Vergata University of Rome and colleagues
have made an important step toward a complete theory of
electrons and phonons [1].

At a low level of theory, the electron–phonon problem is easily
formulated. First, one considers an arrangement of massive
point charges representing electrons and atomic nuclei.
Second, one lets these charges evolve under Coulomb’s law and
the Schrödinger equation, possibly introducing some
perturbation from time to time. The mathematical
representation of the energy of such a system, consisting of
kinetic and interaction terms, is the system’s Hamiltonian.
However, knowing the exact theory is not enough because the
corresponding equations are only formally simple. In practice,
they are far too complex—not least owing to the huge number
of particles involved—so that approximations are needed.
Hence, at a high level, a workable theory should provide the
means to make reasonable approximations yielding equations
that can be solved on today’s computers.

One way to reduce the complexity of the problem is to step back
from the picture of individual particles in favor of one of
effective quasiparticles specific to the system at hand. An early
example of a quasiparticle in the literature is the phonon:
instead of focusing on the atomic nuclei that could, in principle,
be located anywhere in space, one considers their collective
vibration about their positions in a predefined crystal structure.
Scientists have studied such “elastic waves” for almost a
century [2], often resorting to two famous approximations: the
Born-Oppenheimer approximation, which assumes that the
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electrons respond instantaneously to displacements of the
nuclei; and the harmonic approximation, which posits that this
response results in restoring forces proportional to the
displacements.

Stefanucci and colleagues’ work builds on studies made in the
middle of the last century that analyzed the interaction
between quasiparticles by borrowing tools from quantum field
theory. In 1961, Gordon Baym published a corresponding
theory of electrons and phonons, in which the phonon field
assigns a displacement to points in space and time [3]. One of
the aforementioned tools is the technique of Feynman
diagrams, which represent interaction processes graphically
(Fig. 1) and can be translated into mathematical formulas
through simple rules. By combining such diagrams into sets of
equations that recursively depend on each other, one can
account for all possible processes occurring in physical reality.
In 1965, Lars Hedin presented examples of such equations,
which completely describe systems of interacting electrons [4].
In a 2017 review, Feliciano Giustino merged these approaches
and coined the term Hedin-Baym equations in the context of
state-of-the-art materials simulations—answering many, but
not all, open questions [5].

Stefanucci and colleagues have addressed several of the
remaining issues [1]. First, they imposed requirements on the
electron–phonon Hamiltonian, avoiding the mistake of trying to
solve a problem not properly formulated in the first place. They
emphasized that the equilibrium state around which the theory
is built is not known in advance, making setting up and
evaluating the Hamiltonian an iterative procedure. They also
stressed that this Hamiltonian cannot generally be written in
terms of physical phonons, contrary to what is often supposed.
Second, the team generalized Giustino’s work [5] to systems
driven out of equilibrium at any temperature—a key advance
because this scenario reflects experimental and technological
conditions. Mathematically, this generalization allows time to
take on complex values. Third, the researchers carefully derived
the corresponding rules for Feynman diagrams and provided
the first complete set of diagrammatic Hedin-Baym equations.
Such equations form the basis of systematic approximations, in
which certain diagrams are neglected, and provide a criterion
[3] for the resulting dynamics to respect fundamental
conservation laws. Whereas the effects of electrons on phonons
and vice versa are well studied separately [5], here it is crucial

that both occur simultaneously.

Nowadays, parameter-free simulations of electrons and
phonons rely heavily on so-called density-functional
perturbation theory [6], which is based on the
Born-Oppenheimer and harmonic approximations. By contrast,
diagrammatic techniques are often—but not always [7]—used
in combination with parameterized model Hamiltonians.
Efforts to bring both approaches together have led to so-called
downfolding methods, which already exist for the
electron–phonon problem [8]. The insights gained by
Stefanucci and colleagues will certainly help to further bridge
the different strategies. Moreover, the advancements beyond
thermal equilibriumwill be of utmost importance because such
an extension is needed to explain the latest time-resolved
spectroscopy experiments and to design better photovoltaics.
Finally, given that the team’s results apply to any
fermion–boson system, such as an interacting light–matter
system, many fields will benefit from this seminal work.
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