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Matching a Measurement to a
Quantum State
A newmethod identifies the most sensitive measurement that can be
performed using a given quantum state, knowledge key for designing
improved quantum sensors.

By Berihu Teklu

A quantum sensor is a device that can leverage quantum
behaviors, such as quantum entanglement, coherence,
and superposition, to enhance the measurement

capabilities of a classical detector [1–5]. For example, the LIGO
gravitational-wave detector employs entangled states of light to
improve the distance-measurement capabilities of its
interferometer arms, allowing the detection of distance
changes 10,000 times smaller than the width of a proton.

Figure 1: Schematic illustration of the phase space of a quantum
state for quantum sensing. Reilly and his colleagues provide a
method for assessing the sensitivity of a given quantum state to
different evolutions, enabling the optimization of quantum sensing
methods without the need to create new states for each specific
application.
Credit: J. T. Reilly et al. [6]

Typically, quantum sensors use systems prepared in special
quantum states known as probe states. Finding the ideal probe
state for a givenmeasurement is a focus of many research
endeavors. Now Jarrod Reilly of the University of Colorado
Boulder and his colleagues have developed a new framework
for optimizing this search [6]. The approach could aid in
developing quantum sensors that surpass the standard
quantum limit—theminimum noise level of a device that can be
obtained without special quantum-state preparation—and so
could dramatically increase measurement sensitivity [7–9].

The capabilities of quantum sensors are rapidly expanding, and
they are increasingly finding their way from laboratories to the
real world. As such, the technology is poised to play a
significant role in myriad fields. Quantum sensors can detect
parameters ranging frommagnetic fields to temperatures, and
they are expected to enhance the sensitivities of devices
including single-photon detectors; laser imaging, detection,
and ranging (lidar) detectors; and atomic clocks, which are
fundamental to global positioning systems.

In many devices, the quantum sensor plays a crucial role in
parameter estimation. Generally, quantum parameter
estimation consists of three steps: First, the quantum system,
such as a qubit or a collection of qubits, is prepared in its
optimal probe state. Second, the probe state undergoes a
unitary evolution, a step also known as quantum evolution.
This unitary evolution can be thought of as “sensitivity tuning”
where the probe state changes based on the value of the
parameter of interest. This step thus encodes information
about the parameter into the probe state. Third, an optimal
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measurement is executed and information about the parameter
extracted.

How to find the optimal probe state for a specific system or
parameter of interest is a problem on which the quantum
sensor community is increasingly focusing. For a given
quantum sensor, the decision of which probe state to use is
typically done by searching for the state with the maximal
quantum Fisher information (QFI). QFI is the quantum analog of
Fisher information, which measures the information some
observable carries about some unknown parameter. A
quantum probe state’s QFI evaluates its sensitivity to variations
in the parameter of interest, and so is regarded as a key
indicator of the reliability of that state when used in a quantum
sensor. The higher a probe state’s QFI, the more accurate the
measurement of the parameter of interest should be.

The method of Reilly and his colleagues flips that search
protocol on its head. Rather than hunting for the best probe
state for a givenmeasurement, their framework finds the best
measurement for a given probe state. This approach, which
also uses QFI, allows them to assess the full potential of a given
probe state for all quantum sensing applications. In their
approach, the researchers take their probe state. Then they
determine its QFI matrix (QFIM). Diagonalizing that matrix, they
show that they can identify the optimal generator for that probe
state for a specific quantum sensing purpose. The generator
can thus be thought of as the specific measurement or
quantum operation that when applied to a quantum probe
state will maximize the estimation precision parameters related
to the system being measured.

To understandmore broadly how the method works, consider
the problem of trying to find the longest route that a ball rolling
down a hill can traverse in a fixed time period. In the classical
world, the answer is simple—the path will map the route with
the steepest slopes—so the search requires finding that path. In
the quantumworld, the answer is more complex. Quantum hills
exist in enormous numbers of dimensions, making brute force
searches intractable. But Reilly and colleagues’ method follows
an idea similar to the classical one—it finds some optimal
trajectory of the probe state through space and time in a way

reminiscent of how classical general relativity can predict light
paths by finding optimal trajectories through curved
space-time. Using geometrical concepts, they determine which
transformations cause a specific entangled quantum system to
evolve in the fastest way and, therefore, which parameters the
state is most sensitive to.

As well as improving current quantum sensors, the method of
Reilly and colleagues has the potential to open the door for the
use of quantum sensors for multiparameter estimation, which
is required in many imaging andmetrology applications. Their
proposal introduces a novel perspective on quantum sensing
by emphasizing the importance of high-precision
measurements for choosing the right generator for a given
quantum state. Research and development in this area will
likely lead to innovative breakthroughs in the coming years,
driving advancements in quantum technology and in our
understanding of quantummechanics.
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