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Learning Governing Equations
and Control Parameters from
Data
Using a fewmeasurements of a pattern-forming system, a new
machine-learning algorithm can determine the system’s governing
equations and their parameters in a form that is interpretable by
scientists.

By Dina Genkina

W ith the advent of machine-learning algorithms came
the dream of quick-and-easy scientific discoveries,
where an algorithm crunches observational data and

then spits out a model that describes how the measured system
behaves. Back in 2016, a team of researchers at the University of

A newmachine-learning algorithm can use data from different
regimes of a system—in this image four parameter regimes of a
superconductor—to determine the governing equations of the
system and the external parameters that control the system’s
behavior.
Credit: S. L. Brunton et al. [1]

Washington, Seattle, took a step toward that dream, creating a
robust model-generating algorithm that usedmeasurements of
a pattern-forming system to determine that system’s governing
equations [1]. Now the same team has improved that algorithm
so that, as well as predicting a system’s governing equations, it
can identify a system’s key behavior-controlling parameters [2].
J. Nathan Kutz, who headed the study, says that this advance
makes the algorithm useful for gleaning information about real
systems for which the control parameters are unknown. The
algorithm could also be used to predict the behavior of a system
under conditions for which there are currently no data.

Imagine walking from your kitchen to your sofa with a steaming
mug of hot coffee. Walk slowly, and the liquid will likely stay in
the mug, even while its surface rocks gently back and forth.
Walk quickly, however, and the liquid may splash out of the
mug—and possibly onto your clothes—as the waves become
too high for the mug to contain. There are many
parameters—from howmuch coffee is in the cup to the speed
you walk—that go into understanding whether the coffee stays
in the mug or breaches its banks. The machine-learning
algorithm developed by Kutz and his team can take the data
points of the coffee’s top surface over time and then infer which
of these parameters are the key ones for predicting how the
coffee behaves.

The researchers demonstrated their method by first generating
two libraries of parameters. One library contained the hundreds
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of terms that might turn up in an equation describing a system’s
behavior, the other a list of all the possible control parameters.
They then input both libraries and a set of data into the
algorithm. The algorithm filtered the library terms, using a
particular implementation technique known as sparse matrix
regression, until it had the minimal number of terms it needed
to correctly describe the data and the factors that controlled the
data.

The researchers tested their model on a hypothetical system
governed by the Ginzburg-Landau equation, a mathematical
construction used, for example, to describe superconductor
phase transitions. They also demonstrated it on a model
chemical system containing components that oscillate in
concentration. “We put all the known physics into a library, and
the algorithm picked out only the bits it needed to describe the
systems,” Kutz says. “That’s the whole trick to this method.”

The 2016 algorithmworked in a similar way, but it used only
one library—that of the governing-equation parameters. Also,
when the 2016 algorithmwas presented with a calmly rocking
coffee surface and a chaotically splashing one, it could spit out
different sets of governing equations. The update removes that
problem by adding in a training step that aids the algorithm in
recognizing when two datasets come frommeasurements of
one system. The update also allows the algorithm to infer
critical values for control parameters, such as the fastest speed
you can walk without your coffee spilling.

Despite the various improvements, Kutz notes that the accuracy
of their algorithm-determined governing equations can—like
those predicted using other methods—depend on the level of
noise in the measurements. The new algorithm does include a
noise-mitigation strategy, which was developed by a team led
by David Bortz, an applied mathematician at the University of
Colorado Boulder [3]. However, if the noise goes above some
threshold, the algorithm can produce an ill-fitted model.

Nevertheless, Bortz says that the approach of Kutz and his
colleagues could be useful in understanding any system for
which there is a lot of data but no way of gleaning the behavior
from first principles. “The use cases are ubiquitous,” he says.
Kutz is particularly excited about applying the technique to
understanding turbulence and to modeling the behavior of
neurons in the brain, two systems for which scientists are
struggling to build reliable mathematical models. In outputting
equations akin to the ones traditionally created by physicists,
Kutz says that his team’s algorithm stands out among
machine-learning algorithms, which tend to act like black boxes
and spit out results that are difficult to interpret.

Correction (6 November 2023): In a previous version of the story,
Bortz was identified as a computer scientist. He is an applied
mathematician.

Correction (29 November 2023): A previous version of this story
implied that Kutz and his colleagues came up with the idea of
sparse optimization for learning equations from data. That idea
was originally proposed in 2011 by another group.

Dina Genkina is a freelance science writer and a science
communicator at the Joint Quantum Institute, Maryland. She
works in Brooklyn, New York.
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