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Tackling the Puzzle of Our Solar
System’s Stability
A new theory explains why our planets avoid collisions for far longer times
than standard theories of planetary stability predict.

By Daniel Tamayo

S hortly after discovering the law of gravity, Isaac Newton
wondered whether it would allow our Solar System to
remain stable. At face value, the problem seems trivial.

The gravitational perturbations the planets exert on one
another are at least 1000 times smaller than the dominant
central force from the Sun. The catch is that the relevant
timescales are astronomical. Planetary systems like our own
live for roughly 10 billion years (10 Gyr) before their central star
runs out of nuclear fuel. Do these tiny gravitational tugs then
simply average out, or can their effects build up and lead to
instabilities and planetary collisions over such long timescales?

In the 1780s, Pierre-Simon Laplace and Joseph-Louis Lagrange

Figure 1: A Markus-Lyapunov fractal makes use of the approach
devised by Alekesandr Lyapunov (1857–1918) for characterizing the
continuous evolution of a dynamical system from order into chaos.
Credit: BernardH/CC BY-SA 3.0/Wikimedia Commons

thought they had proved the eternal stability of the Solar
System by finding an approximate solution after expanding the
expression for the planets’ average gravitational effect on one
another to lowest order in the orbits’ small eccentricities and
inclinations. A century later, Henri Poincaré discovered that our
Solar System is chaotic, demonstrating that these neglected,
higher-order terms cannot be ignored, and collisions may
eventually occur (for more on the problem’s history, see
Research News: The Final Piece in the Solar System-Stability
Puzzle?). But the practical question of how long such small
effects would need to build up to cause dynamical instabilities
had to await the advent of computers.

A recent insight is that, loosely speaking, the orbits of the outer,
more massive giant planets remain well behaved over the age
of the Solar System [1]. The simplest picture then follows the
orbits of the terrestrial planets (Mercury, Venus, Earth, and
Mars) andmodels the chaos as driving a randomwalk in their
eccentricities and inclinations—until the orbits become so
elliptical that they go unstable. Every chaotic dynamical system
has a characteristic timescale over which predictability is lost,
called the Lyapunov timescale. This parameter corresponds to
the time between steps in the randomwalk [2]. The model
provides a simple theoretical framework; unfortunately, it
suffers from an important tension.

In 1989, Jacques Laskar demonstrated that the Lyapunov
timescale for the terrestrial planets was only a fewmillion years
(Myr) [3]. Yet in a dramatic suite of numerical orbit integrations
requiring 8 million CPU hours, Laskar and Mickaël Gastineau of
the Paris Observatory found in 2009 that dynamical instabilities,
while possible, are rare [4]. Specifically, they found that
Mercury has an approximately 1% chance of colliding with the
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Sun or Venus in the Sun’s remaining 5 Gyr lifetime. How are we
to reconcile these two facts? In a picture where the inner Solar
System is taking random steps every few Myr near a cliff of
instability, how does it typically survive a thousand iterations
without falling off? Now Federico Mogavero, Nam Hoang, and
Laskar—all affiliated with the Paris Observatory—have
presented a persuasive answer [5].

The simple random-walk model discussed above does not
account for an important complication: dynamical systems
have different Lyapunov timescales depending on the direction
traversed in phase space [6]. The fact that the Solar System is
taking steps in its randomwalk every few Myr simply reflects
the direction of fastest chaos. The researchers argue that
Mercury’s survival over billions of years suggests that this
maximally chaotic direction is not particularly perilous. After
all, making many random steps in a direction parallel to the
edge of a cliff is hardly dangerous.

In their new study, the team used numerical methods to
demonstrate that the inner Solar System’s set of Lyapunov
timescales in different directions in phase space span 2 orders
of magnitude. The directions represent diagonals in
eccentricity-inclination space, meaning that a step changes a
particular combination of the four terrestrial planets’
eccentricities and inclinations rather than any one of those
quantities individually. The researchers then focused on the
three most sluggish directions—those along which the inner
Solar System takes random steps only every 0.1–1 Gyr. They
thus identified three combinations of the eccentricities and
inclinations that act as quasiconserved quantities, only weakly
modified by the interplanetary perturbations on long
timescales.

Additionally, Mogavero, Hoang, and Laskar demonstrate that
the chaotic evolution in these slow directions constitutes the
rate-limiting step to instability. In an elegant numerical
experiment, they slightly modified the governing differential
equations to conserve these three particular combinations.
That is, they shut down any evolution along these three
directions. In this dynamical system that’s nearly identical to
the real Solar System, they show numerically that the chance of
losing Mercury becomes negligible within the Sun’s remaining
lifetime. Accordingly, the long timescale for Mercury’s demise is
set by the slow, chaotic evolution of three particularly sluggish

combinations of the terrestrial planets’ eccentricities and
inclinations. This simultaneously explains the relative stability
of our Solar System and clears a path toward simpler
quantitative models for these rare but violent cataclysms.

While the discussion so far has focused on the Solar System’s
surprising stability, Mercury’s existence is remarkably
precarious. If Jupiter’s orbital eccentricity were slightly larger,
the probability of losing Mercury over the Sun’s remaining
lifetimewould be close to one [7]. Our innermost planet lives on
a knife’s edge of stability. Understanding these chaotic
dynamics thus has important implications for how instabilities
might have shaped planetary systems around other stars and
influenced their observed demographics. We will likely never
have sufficient precision on the masses and orbital parameters
in such systems for an analysis like that of Mogavero, Hoang,
and Laskar. Nevertheless, understanding our own Solar System
in detail is an important theoretical step before generalizing the
approach to statistically account for observationally uncertain
parameters.

Stepping back, it would also be deeply unsatisfying if Mercury’s
vulnerability to a slightly more eccentric Jupiter were due to
pure chance. Rather, this fact is surely telling us something
important about the planet formation process. Perhaps
planetary systems formwith more planets than we see today
and with more closely spaced orbits, as Laskar proposed [8].
Such configurations would be unstable and lead to collisions
andmergers that leave behindmore widely separated orbits.
The survivors could then go on to destabilize themselves. In this
scenario, planetary systems repeatedly rearrange into
ever-longer-lived configurations with fewer bodies—a stark
contrast to the static picture evoked by posters of our Solar
System in children’s classrooms.

Perhaps then, as observers who have arrived partway through
this chaotic dance, we should not be surprised to find our own
system on the edge of a knife. When Laskar elucidated the
above scenario in 1996, our single Solar System rendered it a
mostly philosophical speculation. The subsequent discovery of
over one thousand exoplanetary systems now provides a
tantalizing opportunity to test it.

Daniel Tamayo: Department of Physics, Harvey Mudd College,
Claremont, California, US
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