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Angle-Preserving
Transformations Give Rigidity
Transitions a New Twist
New theoretical work explores the onset of rigidity in granular materials
and other disordered systems bymapping out the edges of rigid regions.

By Jen Schwarz and Silke Henkes

P hase transitions are a common part of our daily lives.
Many of them are intuitive: water transforms into steam
or ice, birds spontaneously form a flock, and random

piles of marbles suddenly jam together into a solid. Possibly the
most basic phase transition, however, is a more abstract version
called connectivity percolation (CP). In systems displaying CP,
individual units such as persons or polymers are mapped by
their contacts—or connectors—to a graph consisting of nodes

Figure 1: The interfaces of rigid clusters in an amorphous system
evolve according to a framework known as Schramm-Loewner
theory. At the rigidification transition, these clusters are
consistently described by universal parameters including the
universal diffusion constant κ, the clusters’ fractal dimension d f ,
and correlation length exponent ν. This theory treats the edges of
clusters as a family of curves that are conformally invariant.
Researchers show that it applies to a mechanical percolation
transition, opening the way to a new understanding of
microstructure in other jamming transitions.
Credit: S. Henkes/Leiden University; J. Schwarz/Syracuse
University; APS/A. Stonebraker

and edges. As the number of connectors increases, the system
switches from being disconnected (filled with small, separate
clusters) to being connected (spanned by one large cluster).
This connectivity phase transition is commonly seen in polymer
solutions and pandemic spreading, but researchers have also
used the percolation perspective to describe the onset of
mechanical rigidity in disordered systems, otherwise known as
rigidity percolation (RP). A study now shows that a
tried-and-true mathematical physics approach, applied earlier
to CP, captures new universal parameters that describe RP [1].
The work could lead to a better understanding of the
microstructure connections that produce rigidity in disordered
systems, such as grain packings and living tissues.

A stable mound of marbles is rigid in the sense that if you gently
push on one of the marbles, the mound does not collapse. In
other words, that marble is part of a rigid cluster—a group of
marbles that resists deformation of its collective arrangement.
We can imagine how this stability came about: marbles are
piled onto the mound, locking down the ones below within
small, separate clusters. As more marbles are added, the
clusters become larger (the rigidity percolates) until the entire
mound is locked in place. In many ways, this RP resembles the
process that produces a spanning cluster in CP. Still, theorists
have long believed that, despite their similarities, CP and RP are
fundamentally different types of phase transitions.

The argument that CP and RP are different is based, in part, on
the shapes of their clusters. The complexity of these shapes can
often be characterized by a geometric parameter called the
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fractal dimension. As one identifies a spanning cluster, one can
extract its fractal dimension numerically from the number of
edges in the cluster as a function of system size. This approach
works in all dimensions. However, for two dimensions,
researchers have used several techniques including conformal
field theory (CFT) to analytically compute the fractal dimension
of spanning clusters in CP [2]. For RP, the situation is less
straightforward. That’s because for some cases, numerically
generated RP clusters are nonfractal, while in other cases they
are fractal but with different scaling behavior from CP [3–5].

Despite these differences, recent efforts have delved further
into RP with the aim of extending the techniques used in CP.
The hope is that the already-thorough understanding of CP can
provide a better understanding of the more mysterious RP. In
one contribution, with several colleagues, we recently
introduced the concept of frictional RP for real frictional
particles, such as marbles, in two dimensions. Using a pebble
algorithm, our work identified rigid clusters in simulations [6],
in experiments, and in a lattice model. We established that the
exponents that describe the scaling behavior within the system
are different for standard RP and frictional RP, thereby making
the RP story more intricate [7]. In another contribution, Nina
Javerzat, now at the International School for Advanced Studies
(SISSA) in Italy, and Mehdi Bouzid, now with the French
National Center for Scientific Research (CNRS), confirmed that
the RP transition on a triangular lattice is indeed continuous
and exhibits both global and local conformal invariance [8].
Conformal invariance refers to a systemwhose governing
equations remain intact under any continuous mapping that
preserves angles from one 2D grid to another. This invariance is
muchmore stringent than the typical scale, translational, and
rotational invariance that applies to continuous phase
transitions [8].

These new insights opened the field of RP to the full spectrum
of CFT techniques. In the new work, Javerzat uses an elegant
technique called Schramm-Loewner evolution (SLE) to directly
probe the shape of spanning rigid clusters [1] (Fig. 1). This
technique involves conformally mapping the path formed by
the perimeter of a spanning rigid cluster to the trajectory of a
time-dependent process.

To perform this mapping, Javerzat generated numerous rigid
clusters on a triangular lattice that spanned the region between

the top and bottom of the system. She then treated each
cluster’s border as an instantaneous step in a random process in
time: in other words, each border is a random curve that
evolves according to equations defined in the SLE technique. In
this way, the random curves are reparameterized by a series of
conformal maps related by a driving function and a universal
diffusion constant κ. The diffusion constant is then used to
derive the fractal dimension d f and the correlation length
exponent ν of the clusters. For her triangular systemwith rigid
clusters, Javerzat computed a diffusion constant of κ = 2.8,
consistent with the measured fractal dimension of RP. In CP, κ

has a value of 6 [9]. Javerzat’s calculations demonstrate that,
like CP, RP is continuous at the transition. The difference
between the two universal diffusion constants suggests that CP
and RP are nonetheless distinct types of transitions or distinct
universality classes.

However, Javerzat points out that for minimally rigid clusters
that do not have any redundant edges, the phase transition
could, in principle, have the same universal diffusion constant
as that of CP. This idea partly builds on work that created a
process of growing minimally rigid spanning clusters for
frictional particles [7]. This growth is very similar to spanning
minimally rigid clusters of frictionless particles and even for the
simpler spanning clusters of CP. Our results suggested a type of
superuniversality for clusters right at these transitions.

Using techniques from SLE and CFT to analyze rigidity
transitions in two dimensions opens exciting new avenues from
which to understand howmechanical stability arises in random
structures. In particular, it would be interesting to find out if the
frictional rigid clusters in jammingmap to frictionless rigid
clusters that evolve according to SLE but with a different κ than
their frictionless RP counterpart. Moreover, debates have long
been waged over the transitions exhibited by different
percolation models [10, 11]. Whether these transitions are
continuous or discontinuous could be resolvedmore quickly in
two dimensions using such techniques.
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