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Predicting Tipping Points in
Complex Systems
Amachine-learning framework predicts when a complex system, such as
an ecosystem or a power grid, will undergo a critical transition.

By Naoki Masuda

T he world is full of sudden changes that can be hard
to forecast ahead of time. For example, ecologists have
revealed that regional mass extinctions of species can

occur suddenly as the environment changes gradually (not
suddenly). In the past two decades, analysis of data from
ecology, epidemiology, and other fields has identified several
statistical markers that can anticipate such abrupt changes
before they occur (Fig. 1). Although such “early warning signals”
are qualitatively successful, they are rarely able to predict
exactly when a sudden change will occur. Zijia Liu of Tongji
University in China and his colleagues devised an innovative
machine-learning method to do just that [1]. Given relatively
short-timescale observations of a complex system—for
example, the numbers of individuals of different species in an
ecosystem—their predictive framework quantitatively

Figure 1: Early warning signals are intended to anticipate a sudden
change in a complex system, such as the sudden decrease in
vegetation cover in this example, before it occurs.
Credit: N. Masuda/SUNY Buffalo; APS/Alan Stonebraker

anticipates when a sudden change will occur, across different
types of dynamics, networks, and scenarios.

Ecosystems, power grids, and living organisms are all complex
systems that can experience regime shifts, where a global
parameter (such as species populations or electricity output)
abruptly changes value. These shifts, also called tipping points
or critical transitions, can occur even when their surrounding
environment is relatively stable. Research into these regime
shifts use tools from statistical physics, dynamical systems
theory, and other areas to analyze observational data and
anticipate sudden regime shifts before they occur. Earlier work
led to a list of data markers that can warn that a system is about
to shift [2]. The sample variance and lag-1 autocorrelation (the
correlation between data points taken one time period apart) of
the observed time series are among the most commonly used
early warning signals. In generic complex systems, they
increase as the system approaches the impending regime shift.

However, these signals do not necessarily work well for
networked systems—ones that consist of seemingly
independent but interacting entities [3–5]. Furthermore,
finding an early warning signal that alerts to an impending
regime shift is not as difficult a problem as finding one that
quantitatively predicts when a regime shift will occur. Recent
work in ecology has tackled the latter problem by developing a
predictive model [6], but the method has yet to be generalized.
A separate trend in early-warning-signal research is to use
machine learning, which has becomemore common in physics
research [7]. For example, a machine-learning algorithmwas
able to identify the type of regime shift and to provide early
warning signals when supplied data from a host of different
complex systems [8]. However, previous machine-learning
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methods have not yet addressed quantitative prediction of
regime shifts for various types of dynamics on networks, which
is what Liu’s team has now achieved [1].

By assessing the performance of various machine-learning
models, the researchers decided to use a neural network
architecture that is composed of layers of so-called graph
isomorphism networks (GINs), followed by layers of so-called
gated recurrent unit (GRU) neural networks. The GIN layers take
as input time-series data observed at various nodes of the
network—for example, each nodemight be a geographic
location and the data might track the number of organisms or
the amount of precipitation at that location over time. The GRU
neural network layers receive the output of the GIN layers and
detect recurring patterns in the time-series data; recurrent
neural networks are generally suited for time-series data. In this
manner, the GIN–GRU neural network predicts when the
networked systemwill undergo a regime shift.

Liu and his colleagues validated their GIN–GRU predictive
method on numerical simulations of dynamical systems, such
as synchronization transitions in coupled oscillators, and on
real data from observations, such as those of vegetation
changes in Central Africa as mean annual rainfall levels have
gradually decreased. They also performed robustness tests for
the predictor and, in addition, showed its transfer
ability—meaning that it can use knowledge gained from a
previous task to improve performance on a related one. Such
transfer-learning ability is important because when we want to
predict the tipping point in a novel situation, long-term
observations may not be available. In this situation, pretraining
the neural network predictor with different but related—and
sufficiently abundant—data would get the algorithm ready so
that it can reasonably succeed with a relatively small amount of
data from the target system.

What comes next? The researchers discussed their goal of
decreasing the required data length, which they currently set to

20 time points per node. This is an important research direction
because only a few data points per nodemay be available in a
given environment before it gradually shifts toward a different
state. Furthermore, some nodes may bemore useful than
others for constructing early warning signals. Future work will
also include improving transfer learning across different
networks, such as ones that have different numbers of nodes
and different dynamics. How their predictor performs on real
data and contributes to applications beyond physics, by
collaborating with experts in ecology or psychiatry, for example,
will also be exciting.
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